

Local Features: from Paper to Practice

joint work with

Anastasia Mishchuk, Milan Pultar, Filip Radenovic, Daniel Barath, Michal Perdoch, Eduard Trulls, Kwang Moo Yi, Yuhe Jin, Jiri Matas

Wide baseline stereo pipeline

Toy example for illustration: matching with OpenCV SIFT

#Load images

img1 = cv2.imread('img/v_dogman/1.ppm')

img2 = cv2.imread('img/v_dogman/6.ppm')

#Detect & describe with SIFT

det = cv2.xfeatures2d.SIFT_create(3000)
kps1, descs1 = det.detectAndCompute(img1,None)
kps2, descs2 = det.detectAndCompute(img2,None)

Match with chosen strategy

tentative_matches = match(descs1, descs2)

Find geometric model and inliers

src_pts = np.float32([kps1[m[0]].pt for m in tentative_matches]).reshape(-1,2)
dst_pts = np.float32([kps2[m[1]].pt for m in tentative_matches]).reshape(-1,2)
H, mask = cv2.findHomography(src_pts, dst_pts, cv2.RANSAC, 1.0)

Draw

H_gt = np.loadtxt('img/v_dogman/H_1_6')
draw_matches(kps1, kps2, tentative_matches, mask, H, H_gt, img1, img2)

Toy example for illustration: matching with OpenCV SIFT

Not a toy benchmark: pose accuracy on PhotoTourism data

Image Matching across Wide Baselines: From Paper to Practice. Jin et.al, arXiv 2020

Image Matching Across Wide Baselines: From Paper to Practice

Yuhe Jin · Dmytro Mishkin · Anastasija Mishchuk · Jiri Matas · Pascal Fua Kwang Moo Yi · Eduard Trulls

Received: date / Accented: date

Noname manuscript No. (will be inserted by the editor

stract We introduce a comprehensive benchmark for lo cal features and robust estimation algorithms, focusing on the downstream task - the accuracy of the reconstructed camera pose - as our primary metric. Our pipeline's modular structure allows us to easily integrate, configure, and ombine different methods and heuristics. We demonstra this by embedding dozens of popular algorithms and evalu ating them, from seminal works to the cutting edge of machine learning research. We show that with proper settings classical solutions may still outperform the perceived sta of the art.

Besides establishing the actual state of the art, the of riments conducted in this paper reveal unexpected prop-ies of Structure from Motion (SfM) pipelines that can

is work was partially supported by the Natural Sciences and Enearch Council of Canada (NSERC) Dis ual Geometry Machines" (RGPIN-2018-03788), by s sumplied by Compute Canada, and by Google's Visual P. DM and JM were supported by OP VVV ded project CZ.02.1.01/0.0/0.0/16 019/0000765 "Research Cen atics". DM was also supported by CTU student gran /185/OHK3/3T/13 and by the Austrian Ministry for Transpor n and Technology, the Federal Ministry for Digital and Eco ce of Upper Austria in the frame of the OMET center SCCH. AM was supported by the Swiss National Sci

Jin, K.M. Yi A. Mishchuk, P. Fua D. Mishkin, J. Matas

E. Trulls Google Research E-mail: trulls@g

ide-baseline image matching

algorithmic and learned methods. Data and code are one¹, providing an easy-to-use and flexible framework for

the benchmarking of local feature and robust estimation hods, both alongside and against top-performing meth-

ods. This work provides the basis for an open challenge or

Metric: pose accuracy

Image Matching: Local Features & Beyond CVPR Workshop: Friday, June 19, 2020

The Phototourism Dataset

- 30k images from YCC100M dataset, in 26 scenes
- "Ground truth" established by COLMAP reconstruction
- The basis of Image Matching Competitions 2019 & 2020

Image Matching: Local Features & Beyond CVPR Workshop: Friday, June 19, 2020

Not a toy benchmark: pose accuracy on PhotoTourism data

Figure 2. **Phototourism dataset.** Some images in our dataset and their corresponding depth maps, with occlusions shown in red.

Image sets vary by common visible area

Co-visibility computation example. 3D points from COLMAP -> project into images. Green if seen on both, Red, if seen on one

Visibility – min(area of bounding box of the green points)

Figure 14. Co-visibility histogram – Breakdown for each scene in the validation and test sets. Notice how the statistics may significantly change from scene to scene.

Metric computation

- 1. RANSAC \rightarrow fundamental matrix F
- 2. Essential matrix E from F: $E = K_1^T F K_2$
- 3. Camera pose R, t = cv2.recoverPose(E)
- Decompose (R,t) into rotation and translation components, keep only rotation, get the angular error
- 5. Threshold angular error for set of thresholds and get accuracy per threshold
- 6. Calculate mAA @ 10°

Can we trust Colmap "Ground truth"?

Yes, we can!

Feature used	Number of images								
	100 vs. all	200 vs. all	400 vs. all	800 vs. all					
SIFT [55] SuperPoint [34] R2D2 [80]	0.46° / 0.13° 2.09° / 1.57° 0.41° / 0.14°	0.42° / 0.11° 2.09° / 1.54° 0.29° / 0.09°	0.32° / 0.08° 1.87° / 1.21° 0.28° / 0.09°	0.39° / 0.08° 2.53° / 0.53° 0.21° / 0.06°					

Table 3 Pose convergence in SfM. We report the mean/median of the difference (in degrees) between the poses extracted with the full set of 1179 images for "Sacre Coeur", and different subsets of it, for three local feature methods – to keep the results comparable we only look at the 100 images in common across all subsets. We report the maximum among the angular difference between rotation matrices and translation vectors. The estimated poses are stable, with as low as 100 images.

(a) SIFT

(b) SuperPoint

Geometric verification (RANSAC)

RANSAC: fitting the data with gross outliers

If you are not familiar with modern RANSACs, please, check the CVPR2020 "RANSAC in 2020" tutorial <u>http://cmp.felk.cvut.cz/cvpr2020-ransac-tutorial/</u>

Slides are already there and videos will be uploaded soon

RANSAC in 2020: A CVPR Tutorial

Important

You can join to the Zoom meeting via link https://zoom.us/j/91401481666?pwd=WIJk0XFZ0HBnYIY5Wm1JMz01T3o3UT09.

The presentations will be done via Zoom provided by the organizers of CVPR. In case there will be a problem, the solution (most likely, through our Zoom account) will be announced here. After the presentation, we will upload the recorded videos to this site.

Abstract

The main objective of this tutorial is to present the latest developments in robust model fitting. The tutorial will show the recent advancements in all three lines of research, including new sampling and local optimization methods in the traditional approach, novel branch-and-bound and mathematical programming algorithms in the global methods, and latest developments in differentiable alternative to RANSAC.

tat-iun chio@adelaide edu ar

matas@cmp.felk.cvut.cz

Organizers

Ondra Chum chumgiomp.felk.ovut.cz Dmytro Mishki ducha.aiki@gmail.com

Rene Ranftl ranftr@gmail.com

Is OpenCV RANSAC is a way to go?

42 голоси · Остаточні результати

OpenCV functions: cv2.findHomography() cv2.findFundamentalMatrix()

14.06.2020 CVPR 2020. Tutorial "RANSAC in 2020" <u>https://twitter.com/ducha_aiki/status/1142847831516037120</u>

 \sim

69%

2%

5%

24%

Classical F methods, 1k iterations

Classical F methods in Jin et.al 2020

MAGSAC and MAGSAC++ <u>github.com/danini/magsac</u> (CVPR 2019 & CVPR 2020) DEGENSAC <u>github.com/ducha-aiki/pydegensac</u> Chum et. al CVPR 2005. **pip install pydegensac** GC-RANSAC <u>github.com/danini/graph-cut-ransac</u> Barath and Matas. Graph-cut RANSAC. CVPR 2018

Jin et.al 2020:

- Feature: SIFT, 8k points
- Vary maxIters, measure time.
- Advanced methods (MAGSAC, GC, DegenSAC) are better for both per second and per iteration

This tutorial:

- Benchmark was run on 4 different machines.
- Instead we fix the number of iterations for 1k, 10k, 100k, 1M
- We tune all parameters of the methods e.g. "spatial coherence term" for GC-RANSAC, which improves its results significantly

You need to tune each RANSAC for each local feature

Don't look at descriptors & detectors yet comparison, there is a better plot later

You need to tune each RANSAC for each local feature

(c) GC-RANSAC (d) MAGSAC 0.7 0.1 85 65 64 13 10 57.0 0.5 1. 200 0.5 3 20 0 40 20 20 Inlier threshold η Inlier threshold η **CV-AKAZE** — ContextDesc **CV-FREAK** — LF-Net (2k) VL-DoG-SIFT — D2-Net (MS) CV-DoG/GeoDesc — CV-ORB ---- R2D2 (waf-n16) — VL-DoGAff-SIFT CV-DoG/HardNet — CV-RootSIFT — D2-Net (SS) — VL-Hess-SIFT --- R2D2 (wasf-n16) CV-DoG/LogPolarDesc - CV-SIFT — Key.Net/Hardnet R2D2 (wasf-n8-big) — VL-HessAffNet-SIFT CV-DoG/SOSNet — CV-SURF - L2-Net SuperPoint (2k)

Don't look at descriptors & detectors yet comparison, there is a better plot later

You need to tune each RANSAC for each local feature

	η_{PyR}	$\eta_{ ext{DEGEN}}$	$\eta_{ m GCR}$	$\eta_{ ext{MAG}}$	$r_{\rm stereo}$	$r_{ m multiview}$
CV-SIFT	0.25	0.5	0.5	1.25	0.85	0.75
$CV-\sqrt{SIFT}$	0.25	0.5	0.5	1.25	0.85	0.85
CV-SURF	0.75	0.75	0.75	2	0.85	0.90
CV-AKAZE	0.25	0.75	0.75	1.5	0.85	0.90
CV-ORB	0.75	1	1.25	2	0.85	0.95
CV-FREAK	0.5	0.5	0.75	2	0.85	0.85
VL-DoG-SIFT	0.25	0.5	0.5	1.5	0.85	0.80
VL-DoGAff-SIFT	0.25	0.5	0.5	1.5	0.85	0.80
VL-Hess-SIFT	0.2	0.5	0.5	1.5	0.85	0.80
VL-HessAffNet-SIFT	0.25	0.5	0.5	1	0.85	0.80
CV-DoG/HardNet	0.25	0.5	0.5	1.5	0.90	0.80
KeyNet/Hardnet	0.5	0.75	0.75	2	0.95	0.85
CV-DoG/L2Net	0.2	0.5	0.5	1.5	0.90	0.80
CV-DoG/GeoDesc	0.2	0.5	0.75	1.5	0.90	0.85
ContextDesc	0.25	0.75	0.5	1	0.95	0.85
CV-DoG/SOSNet	0.25	0.5	0.75	1.5	0.90	0.80
CV-DoG/LogPolarDesc	0.2	0.5	0.5	1.5	0.90	0.80
D2-Net (SS)	1	2	2	7.5		
D2-Net (MS)	1	2	2	5	_	_
R2D2 (wasf-n8-big)	0.75	1.25	1.25	2	_	0.95

And per matching method

F-summary: recommendations

- If you haven't tuned the RANSAC, even the best local feature would not work
- Performance of different RANSACs varies significantly, and all the methods have to be tuned to perform well
- Don't use OpenCV or sk-image F-RANSACs, use GC-RANSAC, MAGSAC or DEGENSAC (all available with python bindings)
- Implementation matters (see USAC fail)

Matching and filtering strategies

Nearest neighbor (NN) strategy

Features from img1 or are matched to features from img2

You can see, that it is asymmetric and allowing "many-to-one" matches

Nearest neighbor (NN) strategy

Features from img1 or are matched to features from img2

OpenCV RANSAC failed to find a good model with NN matching Found 1st image projection: blue, ground truth: green, Inlier correspondences: yellow

Mutual nearest neighbor (MNN) strategy

Features from img1 or are matched to features from img2 Only cross-consistent (mutual NNs) matches are retained.

Mutual nearest neighbor (MNN) strategy

Features from img1 or are matched to features from img2 Only cross-consistent (mutual NNs) matches are retained.

OpenCV RANSAC failed to find a good model with MNN matching No one-to-many connections, but still bad Found 1st image projection: blue, ground truth: green , inlier correspondences: yellow

Second nearest neighbor ratio (SNN) strategy

1stNN/2ndNN < 0.8, keep

Features from img1 😑 are matched to features from img2

- we look for 2 nearest neighbors
 - If both are too similar (1stNN/2ndNN ratio > 0.8) → discard
 - If 1st NN is much closer (1stNN/2ndNN ratio ≤ 0.8) \rightarrow

Second nearest neighbor ratio (SNN) strategy

NN/SNN < 0.8, keep

NN/SNN > 0.8, drop

OpenCV RANSAC found a model roughly correct No one-to-many connections, but still bad Found 1st image projection: blue, ground truth: green , inlier correspondences: yellow

1st geometrically inconsistent nearest neighbor ratio (FGINN) strategy

SNN ratio is cool, but what about symmetrical, or too closely detected features? Ratio test will kill them. Solution: look for 2nd nearest neighbor, which is far enough from 1st nearest.

1st geometrically inconsistent nearest neighbor ratio (FGINN) strategy

SNN ratio is cool, but what about symmetrical, or too closely detected features? Ratio test will kill them.

Solution: look for 2nd nearest neighbor, which is far enough from 1st nearest.

Mishkin et al., "MODS: Fast and Robust Method for Two-View Matching", CVIU 2015 15.06.2020. CVPR2020 Tutorial "Local Features: From SIFT to Differentiable Methods"

SNN vs FGINN

SNN: roughly correct

FGINN: more correspondences, better geometry found

Mishkin et al., "MODS: Fast and Robust Method for Two-View Matching", CVIU 2015 15.06.2020. CVPR2020 Tutorial "Local Features: From SIFT to Differentiable Methods"

Symmetrical FGINN

You should tune matching threshold as well \odot

Fig. 10 Validation – Optimal ratio test r for matching with "both". We evaluate bidirectional matching with the "both" strategy (the best one), and different ratio test thresholds r, for each feature type. We use 8k features (2k for SuperPoint and LF-Net). For stereo, we use PyRANSAC.

- The best strategy is mutual NN + ratio test.
- By playing with threshold, you can make almost any local feature a "winner
- The ONLY local feature, not benefit from ratio test is D2Net

Best strategy is mutual NN + ratio test even for binary features

Fig. 13 Validation – Matching binary descriptors. We filter out non-discriminative matches with the ratio test or a distance threshold. The latter (the standard) performs worse in our experiments.

FGINN is less sensitive to the threshold value than SNN

But there is (almost) no difference in performance, when both are tuned.

What about deep learning methods?

^{0.6}Learned methods F with DLT and RANSACs

14.06.2020 CVPR 2020. Tutorial "RANSAC in 2020"

Deep RANSAC.

Learned F methods with DLT and MAGSAC

0.5

- Deep learning methods are not replacement for the RANSAC
- They are (a bit expensive) replacements for the correspondence filtering methods The benefit is not small, but not big either.

Except...for SuperGlue

Worst SuperGlue submission (among 3 variants)

 SuperGlue takes much richer input, than the most of the methods in our study. SuperGlue uses all raw keypoints and descriptors from both images.

The best non-SuperGlue submission

SuperGlue: graph NN + optimal transport matcher

Figure 3: The SuperGlue architecture. SuperGlue is made up of two major components: the *attentional graph neural network* (Section 3.1), and the *optimal matching layer* (Section 3.2). The first component uses a *keypoint encoder* to map keypoint positions \mathbf{p} and their visual descriptors \mathbf{d} into a single vector, and then uses alternating self- and cross-attention layers (repeated L times) to create more powerful representations \mathbf{f} . The optimal matching layer creates an M by N score matrix, augments it with dustbins, then finds the optimal partial assignment using the Sinkhorn algorithm (for T iterations). 15.06.2020, CVPR2020

Descriptor: HardNet (NIPS, 2017)

Mishchuk et.al. Working hard to know your neighbor's margins: Local descriptor learning loss. NIPS 2017

DoG + HardNet is the state-of-the-art for stereo

- DoG-HardNet gain over rootSIFT is just 4% mAP
- All end-to-end learned methods are worse than SIFT
- Even with 2k keypoints

DoG + SoSNet is the state-of-the-art for stereo 8k

		PyRANSAC		DE	EGENSAC	N		
Method	NF	NI↑	$\mathrm{mAA}(10^{o})^{\uparrow}$	NI↑	$\mathrm{mAA}(10^o)^\uparrow$	NI↑	$mAA(10^{o})^{\uparrow}$	Rank
CV-SIFT	7861.1	167.6	.3996	243.6	.4584	297.4	.4583	13
VL-SIFT	7880.6	179.7	.3999	261.6	.4655	326.2	.4633	12
VL-Hessian-SIFT	8000.0	204.4	.3695	290.2	.4450	348.9	.4335	14
VL-DoGAff-SIFT	7892.1	171.6	.3984	250.1	.4680	317.1	.4666	10
VL-HesAffNet-SIFT	8000.0	209.3	.3933	299.0	.4679	350.0	.4626	11
CV-√SIFT	7860.8	192.3	.4228	281.7	.4930	347.5	.4941	9
CV-SURF	7730.0	107.9	.2280	113.6	.2593	145.3	.2552	18
CV-AKAZE	7857.1	131.4	.2570	246.8	.3074	301.8	.3036	16
CV-ORB	7150.2	123.7	.1220	150.0	.1674	178.9	.1570	21
CV-FREAK	8000.0	123.3	.2273	131.0	.2711	196.7	.2656	17
L2-Net	7861.1	213.8	.4621	366.0	.5295	481.0	.5252	5
DoG-HardNet	7861.1	286.5	.4801	432.3	.5543	575.1	.5502	2
DoG-HardNetAmos+	7861.0	265.7	.4607	398.6	.5385	528.7	.5329	3
Key.Net-HardNet	7997.6	448.1	.3997	598.3	.4986	815.4	.4739	8
GeoDesc	7861.1	205.4	.4328	348.5	.5111	453.4	.5056	7
ContextDesc	7859.0	278.2	.4684	493.6	.5098	544.1	.5143	6
SOSNet	7861.1	281.6	.4784	424.6	.5587	563.3	.5517	1
LogPolarDesc	7861.1	254.4	.4574	441.8	.5340	591.2	.5238	4
D2-Net (SS)	5665.3	280.8	.1933	482.3	.2228	781.3	.2032	20
D2-Net (MS)	6924.1	278.2	.2160	470.6	.2506	741.2	.2321	19
R2D2 (wasf-n8-big)	7940.5	457.6	.3683	842.2	.4437	998.9	.4236	15

- But SoSNet/HardNet gain over rootSIFT is not that big.
- Results are not consistent with HPatches

KeyNet + HardNet is the state-of-the-art for stereo 2k

		Ру	RANSAC	DE	EGENSAC	Ν	IAGSAC	
Method	NF	NI↑	$mAA(10^{o})^{\uparrow}$	NI↑	$mAA(10^{o})^{\uparrow}$	NI↑	$mAA(10^{o})^{\uparrow}$	Rank
CV-SIFT	2048.0	84.9	.2489	79.0	.2875	99.2	.2805	11
CV-√SIFT	2048.0	84.2	.2724	88.3	.3149	106.8	.3125	9
CV-SURF	2048.0	37.9	.1725	72.7	.2086	87.0	.2081	14
CV-AKAZE	2048.0	96.1	.1780	91.0	.2144	115.5	.2127	13
CV-ORB	2031.8	56.3	.0610	63.5	.0819	71.5	.0765	18
CV-FREAK	2048.0	62.5	.1461	65.6	.1761	78.4	.1698	16
L2-Net	1936.3	66.1	.3131	92.4	.3752	114.7	.3691	5
DoG-HardNet	1936.3	111.9	.3508	117.7	.4029	150.5	.4033	4
Key.Net-HardNet	2048.0	134.4	.3272	174.8	.4139	228.4	.3897	1
GeoDesc	1936.3	98.9	.3127	103.9	.3662	129.7	.3640	6
ContextDesc	2048.0	118.8	.2965	124.1	.3510	146.4	.3485	8
SOSNet	1936.3	111.1	.3536	132.1	.3976	149.6	.4092	3
LogPolarDesc	1936.3	118.8	.3569	124.9	.4115	161.0	.4064	2
D2-Net (SS)	2045.6	107.6	.1157	134.8	.1355	259.3	.1317	17
D2-Net (MS)	2038.2	149.3	.1524	188.4	.1813	302.9	.1703	15
LF-Net	2020.3	100.2	.1927	106.5	.2344	141.0	.2226	12
SuperPoint	2048.0	120.1	.2577	126.8	.2964	127.3	.2676	10
R2D2 (wasf-n16)	2048.0	191.0	.2829	215.6	.3614	215.6	.3614	7

DoG + HardNet is the state-of-the-art for Multiview 8k

DoG + HardNet is the state-of-the-art for Multiview 8k

Method	NL↑	SR [↑]	$\mathbf{R}\mathbf{C}^{\uparrow}$	TL^{\uparrow}	$mAA(5^{o})^{\uparrow}$	$mAA(10^{o})^{\uparrow}$	ATE↓	Rank
CV-SIFT	2577.6	96.7	94.1	3.95	.5309	.6261	.4721	13
VL-SIFT	3030.7	97.9	95.4	4.17	.5273	.6283	.4669	12
VL-Hessian-SIFT	3209.1	97.4	94.1	4.13	.4857	.5866	.5175	15
VL-DoGAff-SIFT	3061.5	98.0	96.2	4.11	.5263	.6296	.4751	11
VL-HesAffNet-SIFT	3327.7	97.7	95.2	4.08	.5049	.6069	.4897	14
CV-VSIFT	3312.1	98.5	96.6	4.13	.5778	.6765	.4485	8
CV-SURF	2766.2	94.8	92.6	3.47	.3897	.4846	.6251	17
CV-AKAZE	4475.9	99.0	95.4	3.88	.4516	.5553	.5715	16
CV-ORB	3260.3	97.2	91.1	3.45	.2697	.3509	.7377	21
CV-FREAK	2859.1	92.9	91.7	3.53	.3735	.4653	.6229	19
L2-Net	3424.9	98.6	96.2	4.21	.5661	.6644	.4482	9
DoG-HardNet	4001.4	99.5	97.7	4.34	.6090	.7096	.4187	1
DoG-HardNetAmos+	3550.6	98.8	96.9	4.28	.5879	.6888	.4428	5
Key.Net-HardNet	3366.0	98.9	96.7	4.32	.5391	.6483	.4622	10
GeoDesc	3839.0	99.1	97.2	4.26	.5782	.6803	.4445	7
ContextDesc	3732.5	99.3	97.6	4.22	.6036	.7035	.4228	2
SOSNet	3796.0	99.3	97.4	4.32	.6032	.7021	.4226	3
LogPolarDesc	4054.6	99.0	96.4	4.32	.5928	.6928	.4340	4
D2-Net (SS)	5893.8	99.8	97.5	3.62	.3435	.4598	.6361	20
D2-Net (MS)	6759.3	99.7	98.2	3.39	.3524	.4751	.6283	18
R2D2 (wasf-n8-big)	4432.9	99.7	97.2	4.59	.5775	.6832	.4333	6

KeyNet+ HardNet is the state-of-the-art for Multiview 2k

Method	NL↑	SR [↑]	RC [↑]	TL^{\uparrow}	mAA(5°) [↑]	mAA(10°) [↑]	ATE↓	Rank
CV-SIFT	1081.2	87.6	87.4	3.70	.3718	.4562	.6136	12
CV-√SIFT CV-SURF CV-AKAZE CV-ORB CV-FREAK	1174.7 1186.6 1383.9 683.3 1075.2	90.3 90.2 94.7 74.9 87.2	89.4 88.6 90.9 73.0 86.3	3.82 3.55 3.74 3.21 3.52	.4074 .3335 .3393 .1422 .2578	.4995 .4184 .4361 .1914 .3297	.5589 .6701 .6422 .8153 .7169	11 14 13 18 16
L2-Net DoG-HardNet Key.Net-HardNet GeoDesc ContextDesc SOSNet LogPolarDesc	1253.3 1338.2 1276.3 1133.6 1504.9 1317.4 1410.2	94.7 96.3 97.8 93.6 95.6 96.0 96.0	92.6 93.7 95.7 91.3 93.3 93.8 93.8	3.96 4.03 4.49 4.02 3.92 4.05 4.05	.4369 .4624 .5050 .4246 .4529 .4739 .4739	.5392 .5661 .5244 .5568 .5784 .5849	.5419 .5093 .4902 .5455 .5327 .5194 .5090	8 5 1 9 6 4 3
D2-Net (SS) D2-Net (MS) LF-Net SuperPoint R2D2 (wasf-n16)	2357.9 2177.3 1385.0 1184.3 1228.4	98.9 98.2 95.6 95.6 99.4	94.7 93.4 90.4 92.4 96.2	3.39 3.01 4.14 4.34 4.29	.2875 .1921 .4156 .4423 .5045	.3943 .3007 .5141 .5464 .6149	.7010 .7861 .5738 .5457 .4956	15 17 10 7 2

R2D2 is runner-up

Measurement region selector:

15.06.2020. CVPR2020 Tutorial "Local Features: From SIFT to Differentiable Methods"

orientation

Which patch should we describe?

Detector: x, y, scale Should we rotate patch? Should we deform patch? Handcrafted: dominant orientatior

• Find local orientation

D. Lowe, Distinctive Image Features from Scale-Invariant Keypoints, IJCV 2004

Learned orientation: CNN

Yi et al. Learning to Assign Orientations to Feature Points CVPR 2016

If images are upright for sure: don't detect orientation

Dominant gradient orientation: 123 inliers

DoG + HardNet matches +FGINN union + RANSAC. Found 1st image projection: blue, ground truth: green , inlier correspondences: yellow

Learned orientation: 140 inliers

Constant orientation: **181** inliers

If images are upright for sure: don't detect orientation

	C' NI↑	$V - \sqrt{\text{SIFT}}$ mAA(10 ^Q)	I NI [↑]	HardNet $m \Delta \Delta (10^{\circ})^{\uparrow}$	NI↑	SOSNet $m \Delta \Delta (10^{\circ})^{\uparrow}$	Log NI↑	PolarDesc $m \Delta \Delta (10^{\circ})^{\uparrow}$
Standard	281.7	0.4930	432.3	0.5543	424.6	0.5587	441.8	0.5340
Upright Δ (%)	270.0	0.4878	449.2	0.5542	432.9	0.5554	461.8	0.5409
	-4.15	-1.05	+3.91	-0.02	+1.95	-0.59	+4.53	+1.29
Upright++	358.9	0.5075	527.6	0.5728	508.4	0.5738	543.2	0.5510
Δ (%)	+27.41	+2.94	+22.04	+3.34	+19.74	+2.70	+22.95	+3.18

Upright: angle -> zero, remove duplicates.

Upright++: angle -> zero, remove duplicates, get more features until again 8k

If images are upright for sure: don't detect orientation

	C` NL↑	$\sqrt{\text{SIFT}}$ mAA(10 ^o) [↑]	H NL↑	HardNet mAA(10 ⁰) [↑]	NL↑	SOSNet mAA(10 ⁰) [↑]	Log NL↑	PolarDesc mAA(10 ⁰) [↑]
Standard	3312.1	0.6765	4001.4	0.7096	3796.0	0.7021	4054.6	0.6928
Upright Δ (%)	3485.1	0.6572	3594.6	0.6962	4025.1	0.7054	3737.4	0.6934
	+5.22	-2.85	-10.17	-1.89	+6.04	+0.47	-7.82	+0.09
Upright++	4404.6	0.6792	4250.4	0.7231	3988.6	0.7129	4414.1	0.7109
Δ (%)	+32.99	+0.40	+6.22	+1.90	+5.07	+1.54	+8.87	+2.61

Upright: angle -> zero, remove duplicates.

Upright++: angle -> zero, remove duplicates, get more features until again 8k

Approximate nearest neighbor search: not for free

HPatches matching score: exact search vs tuned FLANN vs OpenCV default

HardNet

HardNetAmos performance with FLANN kd-tree on HPatches

RootSIFT

Approximate nearest neighbor search: not for free

1-18% mAA loss

	С	$V-\sqrt{SIFT}$]	HardNet	ardNet		SOSNet	
	NI↑	$mAA(10^{O})^{\uparrow}$	NI↑	$mAA(10^{O})^{\uparrow}$	NI↑	$mAA(10^{o})^{\uparrow}$	NI↑	$mAA(10^{O})^{\uparrow}$
Exact	281.7	0.4930	432.0	0.5532	424.3	0.5575	470.6	0.2506
FLANN Δ (%)	274.6 -2.52	0.4879 -1.03	363.3 -15.90	0.5222 -5.60	339.8 -19.92	0.5179 -7.10	338.9 -27.99	0.2046 -18.36

AffNet (ECCV 2018) Measurement region selector

AffNet: learning measurement region

Fig. 4. AffNet. Feature map spatial size – top, # channels – bottom. /2 stands for stride 2.

Mishkin et.al. Repeatability Is Not Enough: Learning Affine Regions via Discriminability. ECCV 2018 15.06.2020. CVPR2020 Tutorial "Local Features: From SIFT to Differentiable Methods"

Do AffNet help? Yes, if the problem is hard

DoG + HardNetAmos: 123 inliers

FGINN union + RANSAC. Found 1st image projection: blue, ground truth: green , inlier correspondences: yellow

DoG + AffNet + HardNetAmos : 165 inliers

AffNet: learning measurement region

• Find affine shape such that maximizes difference between positive and hardest-in-batch negative examples

- Positive-only learning (Yi et. Al, CVPR2015) leads to degenerated ellipses
- Triplet margin (HardNet) unstable in training affine shape

Does AffNet makes sense? Not for PhotoTourism data

Does AffNet makes sense? Not much for PhotoTourism data

		Py	PyRANSAC		GENSAC	MAGSAC		
Method	NF	NI↑	$\mathrm{mAA}(10^o)^\uparrow$	NI↑	$\mathrm{mAA}(10^o)^\uparrow$	NI↑	$mAA(10^{o})^{\uparrow}$	Rank
CV-SIFT	7861.1	167.6	.3996	243.6	.4584	297.4	.4583	13
VL-SIFT	7880.6	179.7	.3999	261.6	.4655	326.2	.4633	12
VL-Hessian-SIFT	8000.0	204.4	.3695	290.2	.4450	348.9	.4335	14
VL-DoGAff-SIFT	7892.1	171.6	.3984	250.1	.4680	317.1	.4666	10
VL-HesAffNet-SIFT	8000.0	209.3	.3933	299.0	.4679	350.0	.4626	11

Method	NL^\uparrow	SR^\uparrow	RC^{\uparrow}	TL↑	$\mathrm{mAA}(5^o)^\uparrow$	$\mathrm{mAA}(10^{o})^{\uparrow}$	ATE↓	Rank
CV-SIFT	2577.6	96.7	94.1	3.95	.5309	.6261	.4721	13
VL-SIFT	3030.7	97.9	95.4	4.17	.5273	.6283	.4669	12
VL-Hessian-SIFT	3209.1	97.4	94.1	4.13	.4857	.5866	.5175	15
VL-DoGAff-SIFT	3061.5	98.0	96.2	4.11	.5263	.6296	.4751	11
VL-HesAffNet-SIFT	3327.7	97.7	95.2	4.08	.5049	.6069	.4897	14

Multiview

Local feature detector

Detector is the often failure point of the whole process

- Yet we still use 10-20 y.o stuff like SIFT or FAST, because nothing significantly better for practical purposed have been proposed
- So let`s stick to the basics

Stylianou et.al, WACV 2015. Characterizing Feature Matching Performance Over Long Time Periods

Qualitive comparison: classical features

SIFT is the DoG detector + SIFT descriptor

- Really, there is not such thing, as SIFT detector.
- But everyone so got used to name DoG as SIFT ☺

Detections on synthetic image

Gaussian scalespace, "stack of gradually smoothed versions" of original image

Joint detectors and descriptors

```
SuperPoint (CVPRW 2017)
DELF (ICCV 2017)
D2Net (CVPR 2019)
```

Qualitive comparison: learned features

Comparison on toy example

SuperPoint: 51 inliers

D2Net: 26 inliers, incorrect geometry

400

DoG + HardNet: 123 inliers

Some qualitive examples

All things together

SIFT + SNN match + OpenCV RANSAC: 27 inliers

SIFT + NoOri + HardNet + FGINN union match + CMP RANSAC: 179 inliers

I really need to match this

• View synthesis: MODS

Figure 1: (left) the affine camera model (1). Latitude $\theta = \arccos 1/t - \text{latitude}$, longitude ϕ , scale λ scale. (right) Transitional tilt τ for absolute tilt t and rotation ϕ .

MODS (controller and preprocessor)

MODS handles angular viewpoint difference up to:

- 85° for planar scenes
- 30° for structured

D. Mishkin, J. Matas and M. Perdoch. MODS: Fast and Robust Method for Two-View Matching, CVIU 2015,

Thank you for your attention

- If you DO NOT need correspondences & camera pose → DO NOT use local features. Use global descriptor (<u>ResNet101 GeM</u>) + fast search (<u>faiss</u>)
- Step 0: try OpenCV (root)SIFT
- Use proper <u>RANSAC</u>
- Matching \rightarrow use FGINN in two-way mode
- Need to be faster \rightarrow ORB/SuperPoint.
- Custom data \rightarrow train on your own dataset
- If images are upright, DO NOT DETECT the ORIENTATION
- Landmark data \rightarrow DELF
- Try SuperGlue, it seems to be super cool