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Abstract We introduce a comprehensive benchmark for lo-
cal features and robust estimation algorithms, focusing on
the downstream task — the accuracy of the reconstructed
camera pose — as our primary metric. Our pipeline’s mod-
ular structure allows us to easily integrate, configure, and

' combine different methods and heuristics. We demonstrate

this by embedding dozens of popular algorithms and evalu-
ating them, from seminal works to the cutting edge of ma-
chine learning rescarch. We show that with proper settings,
classical solutions may still outperform the perceived state
of the art.

Besides establishing the actual state of the art, the ex-
periments conducted in this paper reveal unexpected prop-
erties of Structure from Motion (SfM) pipelines that can

‘This work was partially supported by the Natural Sciences and En-
gincering Research Council of Canada (NSERC) Discovery Grant
“Deep Visual Geometry Machines” (RGPIN-2018-03788), by sys-
tems supplied by Compute Canada, and by Google's Visual Po-
sitioning Service. DM and JM were supported by OP VVV
funded project CZ.02.101/0.0/0.0/16 019/0000765 “Research Cen-
ter for Informatics”. DM was also supported by CTU student grant
SGS17/18S/OHK3/3T/13 and by the Austrian Ministry for Transport,
Innovation and Technology, the Federal Ministry for Digital and Eco-
nomic Affairs, and the Province of Upper Austria in the frame of the
COMET center SCCH. AM was supported by the Swiss National Sci-
ence Foundation.

Fig. 1 Every paper claims to outperform the state of the art. Is this
possible, or an artifact of insufficient validation? On the left, we show
stereo matches obtained with D2-Net (2019) [35], a state-of-the-art lo-
cal feature, using OpenCV RANSAC with its default settings. We color

On the right,
‘we show SIFT (1999) [55] with a carefully tuned MAGSAC [32] - no-
i Thi home
‘message: 1o correctly evaluate a method's performance, it needs to be
embedded within the pipeline used to solve a given problem, and the
different components in said pipeline need to be tuned carefully and
jointly, which requires engincering and domain expertise. We fll this
need with a new, modular benchmark for sparse image matching, in-
corporating dozens of built-in methods.

Kornia
library

® kornia



Programme

® (09:00 —10:00 Overview of classical & end-to-end methods
® 10:00 —11:00 Local features: from paper to practice
® 11:00 —12:00 Kornia introduction & hands-on Session

https://local-features-tutorial.github.io/



https://local-features-tutorial.github.io/

What is image matching?




Why is image matching useful?

SfM

L. Schonberger and J.-M. Frahm,
Structure-from-Motion Revisited, 2016
COLMAP



Why is image matching useful?

ORB-SLAM?2 for Monocular, Stereo and RGB-D Cameras

Code: https://github.com/raulmur/ORB _SLAM? .
Paper: Raul Mur-Artal, and Juan D. Tardés. ORB-SLAM2: an Open-Source SLAM System for Monocular, Stereo
and RGB-D Cameras. ArXiv preprint arXiv:1610.06475, 2016

ORB-SLAM2: an Open-Source SLAM for Monocular,
| SPeeaXx7 |

(& e

SLAM

b ) 1:26/232 ‘ £ Youlube ™3

R. Mur-Artal, and J. D. Tardds.
ORB-SLAMZ2: an Open-Source SLAM System for
Monocular, Stereo and RGB-D Cameras, arXiv 2016
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Why is image matching useful?

SLAM

Daniel DeTone, Tomasz Malisiewicz, Andrew
Rabinovich, Superpoint.
MagicLeap SLAM



Why is image matching useful?

Collect Items to
increase your score

Unlock Checkpoints

Augmented Reality
ScavengAR App




Why is image matching useful?

{¢) SIFT maxhes | {d) SIFT matches 2

Panoramas

Brown and Lowe, Automatic panoramic image stitching using invariant image features

{e) RANSAC inliers | () RANSAC inliers 2

Image: Rick Szeliski




Image Matching - Practicality

e Matching a set of images enables us to “recover” the geometry of the world from
individual images.

e To understand why, we need to quickly discuss a few things about cameras.



Scene B Scene A Scene C
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Point correspondences for triangulation

X X.
X,
2..0
o7
OL.:- oeL
Left view Right view

« One left-view to right-view match is not enough
« Min number of matches defined by theory and algorithms (e.g. 8-point algorithm)
« Practically we aim for a higher number of matches than the theoretical (e.g. > 100)

'Hartley and Zisserman, Multiple view geometry in computer vision.

Image: Wikipedia



Matching points - why do we need a lot of them?
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RANSAC: fitting the data with gross outliers

1500 + + data

< m?ﬁgfi‘“ https://github.com/ducha-aiki/pyransac
— eXacl system

—— linear fit

1000

500

0 5 10 15 20 25 More details & info: Dmytro’s talk
at 10:00am

Image credit: https://scipy-
cookbook.readthedocs.io/items/RANSAC.html



https://scipy-cookbook.readthedocs.io/items/RANSAC.html
https://github.com/ducha-aiki/pyransac

Matching points - why do we need a lot of them?
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RANSAC: image matching example

Multiple View Geometry in Computer
Vision
Hartley & Zisserman

Fig. 11.4. i p ion of the matrix two images using RANSAC.
(a) (b) left and right images of Keble College, Oxford. The motion between views is a translation and
rotation. The images are 640 x 480 pixels. (c) (d) detected corners superimposed on the images. There
are approximately 500 corners on each image. The following results are superimposed on the leftimage :
(e) 188 putative matches shown by the line linking corners, note the clear mismatches; (f) outliers — 89
of the putative matches. (g) inliers — 99 correspondences consistent with the estimated F; (h) final set of
157 correspondences after guided matching and MLE. There are still a few mismatches evident, e.g. the
long line on the left




Recap

Better ways to match points between two images

!

Easier job for relative camera pose estimators

|

Better 3D models, panoramas, AR apps etc



Classical pipeline

Image Credit: Wikipedia
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Classical pipeline
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The classical image matching pipeline

Image A

Step 1 Detection: Choose “interesting” points

Step 2 Description: Convert the points to a suitable mathematical
representation (descriptor)

Step 3 Matching: Match the point descriptors between the two
Images



Common types of feature frames

sl

Point: x,y

Circle: x,y,p

Rectangle: x,y,w, h
Oriented Circle: x,y, p,0
Ellipse: x,y,a, b

vvyVvyVvVvyywyy

Oriented Ellipse: x,y,a,b,0



Feature frame/keypoint — Simplest Definition

Foay) = 0 (I yk) — 1% + AX, yi + Ay))?
(Xk,yK)EW

Foay) e S (k(x,y)Ax + 1 (x, y)Ay)?
(x,y)eWw



Feature frame/keypoint — Simplest Definition

> X hdy

M (x,y)ew (x,y)ew
S bl Y 12
(x,y)ew (x,y)ew




Feature frame/keypoint — Simplest Definition

X 2 kdy]

M — (x,y)eWw (x,y)eWw
SNV SR
| (x,y)eWw (x.y)ew |

A1, Ao: Eigenvalues of M
» A, =0
> A1 > A
> A < A
> A1 x>0



Feature frame/keypoint — Simplest Definition




Adding scale estimation




SIFT Detector

Scale
(next
octave)

Scale
(first
octave)

Difference of
Gaussian Gaussian (DOG)

*Lowe, "Distinctive image features from scale-invariant keypoints” .



SURF

Fig.1. Left to right: the (discretised and cropped) Gaussian second order partial
derivatives in y-direction and @y-direction, and our approximations thereof using box
filters. The grey regions are equal to zero. 5

°Bay, Tuytelaars, and Van Gool, “Surf: Speeded up robust features' -



Edge Foci
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Figure 2. Flow diagram of the detector: (a) input image, (b) nor-
malized gradient f , (¢) normalized gradients separated into orien-
tations f;, (d) responses after applying oriented filter h; = f; ® g,
(e) the aggregated results h, and (f) detected interest point.
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"Zitnick and Ramnath, “Edge foci interest points”.



MSER

8Matas et al., “Robust wide-baseline stereo from maximally stable extremal
regions’ .
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%Rosten and Drummond, “Machine learning for high-speed corner
detection”.



» Many possibilities for types of feature frames

» Might include scale & orientation

Edge Foci DoG Hessian Laplace Harris

Figure 8. Visualization of the interest points and their spatial dis-
tributions for various detectors on Yosemite image.

Source: Rick Szeliski



From feature frames to patches

Rectify patch around
feature frame

Detect Reglons



Rectify patch around
feature frame

Local Descriptor

A vectorial representation of the patch around a feature frame
which is more a discriminative and robust than the patch.



Rectify patch around
feature frame

Detect Regions

Local Descriptor

A vectorial representation of the patch around a feature frame
which is more a discriminative and robust than the patch.
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How to describe patches



IO BB N7
[ ~ A Y7 N
[ e gh g 47T
AN | S KN e

NEMAERE NN AEE
" FREEARYS EEE
« B2
| C ) NP O Dl NP
[« L
N r
DRl T ’ ‘
77 7

EESEIES

e—
v

k| A x|k

e | | e | A

¥ | KK | K

» The local spatial pooling of the descriptor is based on a
rectangular grid that partitions the patch into several regions.

» Assuming the patch is divided into M rectangular areas, and
the gradients are quantised to K angle bins, the resulting K
dimensional histograms concatenated from M areas, will be
represented by a point in the RM*K space.

» In the case of the original implementation of SIFT, 16 grid
quanta were combined with 8 angular bins, resulting in final
dimensionality of 128.

Lowe: Distinctive Image Features from Scale-Invariant Keypoints



https://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf




GLOH

*

(a) image gradients (b) keypoint descriptor

Mikolajczyk & Schmidt: A Performance Evaluation of Local Descriptors
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Chandrasekhar et al. CHoG: Compressed histogram of gradients a low bit-rate feature descriptor



https://ieeexplore.ieee.org/abstract/document/5206733/

DAISY

Winder et al. Picking The Best Daisy

N S direction-j

Fig. 6. The DAISY descriptor: Each circle represents a region where the
radius is proportional to the standard deviations of the Gaussian kemels
and the “+" sign represents the locations where we sample the
convolved orientation maps center being a pixel location where we
compute the descriptor. By overlapping the regions, we achieve smooth
transitions between the regions and a degree of rotational robustness.
The radii of the outer regions are increased to have an equal sampling of
the rotational axis. which is necessary for robustness aqainst rotation.



LIOP
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Wang et al. Local Intensity Order Pattern for Feature Description



[~, d 1] = (Pl(:));
LUCID [~, d:EZ] igit(gzm));

sum (descl ~= desc2);

12345678910112131415161718192021222324252627

¥

3,5,6,9,13, 14,16, 18,19, 21,22, 23,2, 11,20, 1,4, 7,8, 10, 12, 15, 17, 24, 25, 26, 27)

Ziegler et al. Locally Uniform Comparison Image Descriptor



Aggregation across scales and viewpoints

Several methods identified that aggregation across different scales
or different viewpoints into a single feature vector can

improve the discriminative power of the descriptor, albeit at the
price of much higher computational cost.



ASIFT

Similarity—invariant image matching

Morel and Yu. Affine-Sift



DSP-SIFT
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Dong and Soatto. Domain-Size Pooling in Local Descriptors:

DSP-SIFT
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Binary descriptors



Hashing SIFT

A 101

1819

Terasawa and Tanaka, Spherical LSH for approximate nearest neighbour
search on unit hypersphere.

Strecha et al., LDAHash: Improved matching with smaller descriptors.

Image from Haisheng Li.



BRIEF

Binary robust independent elementary features

Calonder et al. Brief



Learning-based descriptors

® From 2005 and on, more and more machine learning was utilised



PCA-SIFT

Collect a matrix X € RV*P with N descriptors of dimensionality D
C=X"X
C =UrV

Use the first K eigenvectors from U to project X to a new
descriptor of size K. X, = U, X?3

Ke and Sukthankar, PCA-SIFT: A more distinctive representation for
local image descriptors
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Linear Projections

Cai, Mikolajczyk, and Matas, Learning linear discriminant
projections for dimensionality reduction of image descriptors

Z(i,j)e’D [u”x; — U‘TXJ'H2

urpp = argmax T T ;

. 112

u Z(z’,j)es [ux; —ul'x]|
ulCpu

= argmaxX ———

arg ma u?Csu

(2)

Where Cp and Cs represent the inter- and intra-class
covariance matrices of differently labeled points (un-
matched features in image descriptor space) and same
labeled points (matched features), respectively.

def
Cp = Z (xi —xj)(xi — Xj)T 3)
(i,j)€D
def
Cs = > (xi—x5)(x —x;)" (4)
(i,j)€S

Note that these are not the same matrices as the between-
class Sp and within-class scatters Sy in equation (1) for
LDA, although they are related (see section 3.3) . The
solution is the generalized eigenvectors:

U = eig(C5'Cp) 5)

The projection matrix is U € R™*™', with m’ < m eigen-
vectors corresponding to the m’ largest eigenvalues.



Linear Projections
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Convex optimisation for learning descriptors

Learn optimal configuration of gaussian filters s.t.

min d,(x.y) < min d,(x,u),
yeP(x) 77( y) uchN(x) 7?( )

high

low

27

Simonyan, Vedaldi, and Zisserman, Learning Local Feature Descriptors Using
Convex Optimisation



Deep Learning Era

Encoder Decoder

4 ‘nﬂt‘“
conv + BN + ReLU + pooling upsampling + conv + BN + ReLU i L g ,]I]L‘]l‘
&

Image: Nicolas Audebert



Early work (2008)

® Early work on learning convolutional neural networks as feature descriptors
specifically for local patches, but was not immediately followed

—

- \\
' trainable 8 ous Label:{0,1}
Model © out
Gw(X) 0 MN
- U

e.g. image pair — loss
= function ) error

of the w
same class

T ou
—
trainable 8 gﬁ 3?&!22”
Model O out2
Gw(X) O ouz
_—

-

L—

Jahrer, Grabner, and Bischof. Learned local
descriptors for recognition and matching.



Early work (2008)




Learn optimal configuration of gaussian filters

in dy(x,y) < in d,(x,u),
Jmin, (%) it ) (x,u)

high

low
27

s.t.

DEERE

lan Goodfell v,

ARNING

and Aaron Cou;'ville




The first “deep” success

%lp
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Get a network pre-trained on
ImageNet

mammal — placental — carnivore — canine — dog —’workmg dog— husky

— watercraft — sailing vessel — sallboat — trimaran

24

12 12

Remove FC layers & use features

12 12




The first “deep” success

Raw RGB SIFT

ImageNet CNN Unsupervised CNN
g [
0 06 o 067 0 06 o 06 ;
E g g = g —
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2 /'——-- 2 2 =~ Layer 4 2 =~ Layer 4
<03 <034 <03 <03

47 69 91 47 69 91 47 69 91

Patch size Patch size Patchsize Patch size

Fischer, Dosovitskiy, and Brox, Descriptor Matching with Convolutional
Neural Networks: a Comparison to SIFT



Learn optimal configuration of gaussian filters s.t.

n (X, ),

1

dy(X,y) < min a
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Learn optimal configuration of gaussian filters s.t.

min d, (x < min dy(x,u
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Deep learned descriptors

Neural Network

12

%

matching
Input Patches

non-matching




DeepCompare

similarity

.................................

decision network

ConvNet

patch 1 patch 2

A a
min o ||w||2 + me‘((). 1 — yio™)
w 2
=1

Zagoruyko and Komodakis, Learning to Compare Image Patches via
Convolutional Neural Networks



DeepCompare
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patch 1 patch 2 patch 1 patch 2

Figure 2. Three basic network architectures: 2-channel on the left,
siamese and pseudo-siamese on the right (the difference between patch 1 patch 2
i and pseudo-siamese is that the latter does not have shared
branches). Color code used: cyan = Conv+ReLU, purple = max
pooling, yellow = fully connected layer (ReLU exists between
fully connected layers as well).

Figure 3. A central-surround two-stream network that uses a
siamese-type architecture to process each stream. This results in
4 branches in total that are given as input to the top decision layer
(the two branches in each stream are shared in this case).



Reminder: Early work (2008)
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Jahrer, Grabner, and Bischof. Learned local
descriptors for recognition and matching.



TFeat

Z{oNN|
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where

Lrank (0.0 ) =max(0,p+ 0, —6_)

Vassileios Balntas et al., Learning local feature descriptors with
triplets and shallow convolutional neural networks



Triplet Learning
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L2-Net
Ey = —% (Z log s¢; + Zlog s;.",.)

3x3 Conv 64
2 2
G :
S Ey = (ri;)” + Z (ri3)
3x3 Conv 128 Py ij
8x8 Conv 128

DN | =

E; = —% (E log vg; + Z log v;"i)
i i

« E,: Similarity loss
* E,: Compactness loss
« Ej: Intermediate feature maps loss

Tian, Fan, and Wu. L2-Net: Deep Learning of Discriminative Patch
Descriptor in Euclidean Space



Binary L2-Net

s Test Liberty Notredame Yosemite Mean
45 r L2-Net 4.16 1.54 441 3.37
4 L2-Net+ 3.2 1.3 3.6 2.7
a5 CS L2-Net 2.43 0.92 2.58 1.97
g sk CS L2-Net+ 1.9 0.73 1.85 149
éiz.s Binary L2-Net 124 6.4 13.16 10.65
g .| Binary L2-Net+ 10.74 5.44 11.07 9.08
2 Binary CS L2-Net  6.43 2.88 6.91 54
ersr Binary CS L2-Net+ 5.4 2.44 5.88 4.57
1}
05 F Table 2. Performance of networks on the Brown dataset when they
oL 1 are trained on HPatches dataset .
-0.5 0 05

Range of Value

use sign of output



Batch of input patches [l Descriptors Distance matrix
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Mishchuk et al. Working hard to know your neighbour's margins:
Local descriptor learning loss



HardNet

Table 1: Patch correspondence verification performance on the Brown dataset. We report false
positive rate at true positive rate equal to 95% (FPR95). Some papers report false discovery rate
(FDR) instead of FPR due to bug in the source code. For consistency we provide FPR, either
obtained from the original article or re-estimated from the given FDR (marked with *). The best
results are in bold.

Training Notredame  Yosemite Liberty Yosemite Liberty Notredame Mean
Test Liberty Notredame Yosemite FDR FPR
SIFT [9] 29.84 22.53 27.29 26.55
MatchNet*[14] 7.04 11.47 3.82 5.65 11.6 8.7 774  8.05
TFeat-M* [23] 7.39 10.31 3.06 38 8.06 7.24 647  6.64
PCW [33] 744 9.84 348 3.54 6.56 5.02 5.98
L2Net [24] 3.64 5.29 1.15 1.62 443 330 324
HardNetNIPS 3.06 427 0.96 1.4 3.04 253 3.00 254
HardNet 147 2.67 0.62 0.88 2.14 1.65 1.57
Augmentation: flip, 90° random rotation

GLoss+[31] 3.69 491 0.77 1.14 3.09 2.67 271
DC2ch2st+[15] 4.85 72 1.9 2.11 5.00 4.10 4.19
L2Net+ [24] + 2.36 47 0.72 1.29 257 171 223
HardNet+NIPS 228 325 0.57 0.96 2.13 222 1.97 1.9
HardNet+ 149 251 0.53 0.78 1.96 1.84 151

Mishchuk et al. Working hard to know your neighbour's margins:

Local descriptor learning loss



SOSNet

First Order Similarity Loss

N

1 s eg 2

Lros = N§max(0,t+d$° —d;®)",
dli)os = d(whw:-)v

dxilcg = VI}’llJigi(d(Ii,1']'),d(.’l?i,I;—),d(zj,.’tj),d(z:—,l';—)),

Lt = Lros + Rsos;

SOSNet: Second Order Similarity Regularization for Local Descriptor
Learning

Yurun Tian, Xin Yu, Bin Fan, Fuchao Wu, Huub Heijnen, Vassileios Balntas

Second Order Similarity Loss

j#i

N
d? (@, zf) = \l > (d(=i,z;) — d(=f, )2,

N
1 .
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SOSNet

0.5 ~/ 05 /

(a) Triplet Loss (b) Triplet Loss + SOSR
Figure 1. Qualitative results of our proposed SOSR on features
learned for the 10 digits of the MNIST [19] dataset. Each digit is
represented by a different colour on the unit sphere. We can ob-
serve that by using our SOSR method that encourages second or-
der similarity, more compact individual clusters are learned com-
pared to standard triplet loss.

SOSNet: Second Order Similarity Regularization for Local Descriptor

Learning

Second order consistency between classes

before training

after training
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o L

Yurun Tian, Xin Yu, Bin Fan, Fuchao Wu, Huub Heijnen, Vassileios Balntas
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Current status: classical pipeline

SOSNet # Total Matches: 263 # Correct Matches: 262

4




Limits of the “classical pipeline”
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Classical pipeline replacement?

Detect




Classical pipeline replacement?

Detect

*Maybe some parts only



Limits of the “classical pipeline”

® New methods are needed that are based on modern networks, including end to
end training of networks

® Need to abstract more than the “keypoint” & “patch” paradigms.



Methods

)

“Modern

Image: Wikipedia



Modern methods

® Replace some/all parts of the classical pipeline
® Focus on training as much as possible end-to-end
® Focus on new matching methods, other than argmins of distance matrix
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Yi et al., LIFT: Learned Invariant Feature Transform
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LF-Net

Detector

STN —»@—. Descriptor |— D¥

{x;,yi,500:) patches

(a) The LF-Net architecture. The detector network generates a scale-space score map along with dense orientation
estimates, which are used to select the keypoints. Image patches around the chosen keypoints are cropped with a
differentiable sampler (STN) and fed to the descriptor network, which generates a descriptor for each patch.

2
scoremap]. | & Det.
cleaning 2

Ono et al., LF-Net: Learning Local Features from Images



Learning correspondences
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Yi et al., Learning to Find Good Correspondences



Superpoint

(a) Interest Point Pre-Training (b) Interest Point Self-Labeling (c) Joint Training
SuperPoint

Labeled Interest
Point Images

¥ o Interest

"~ - g=" , PointLoss
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Base Detector Adaptation Bl *. - §
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[see Section 4] [see Section 5] [see Section 3]

Figure 2. Self-Supervised Training Overview. In our self-supervised approach, we (a) pre-train an initial interest point detector on
synthetic data and (b) apply a novel Homographic Adaptation procedure to automatically label images from a target, unlabeled domain.
The generated labels are used to (c¢) train a fully-convolutional network that jointly extracts interest points and descriptors from an image.

DeTone, Malisiewicz, and Rabinovich, SuperPoint: Self-
Supervised
Interest Point Detection and Description



Superpoint
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DeTone, Malisiewicz, and Rabinovich, SuperPoint: Self-
Supervised
Interest Point Detection and Description




Implicitly Matched Interest Points (IMIPs

Cieslewski, Bloesch, and Scaramuzza, Matching Features without
Descriptors: Implicitly Matched Interest Points

Figure 1. We propose a CNN interest point detector which pro-
vides implicitly matched interest points — descriptors are not
needed for matching. This image illustrates the output of the final
layer, which determines the interest points. Hue indicates which
channel has the strongest response for a given pixel, and brightness
indicates that response. Circles indicate the 128 interest points,
which are the global maxima of each channel, circle thicknesses
indicate confidence in a point. Lines indicate inlier matches after
P3P localization.



DELF
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' 41 ' 7 Attention Scores
“Attention” as weighting
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(a) Descriptor Fine-tuning (b) Attention-based Training

Figure 9: Comparison of keypoint selection methods. (a) Input
image (b) L» norm scores using the pretrained model (DELF-
noFT) (¢) L2 norm scores using fine-tuned descriptors (DELF+FT)
(d) Attention-based scores (DELF+FT+ATT). Our attention-based
model effectively disregards clutter compared to other options.

Noh et al., SuperPoint: Large-Scale Image Retrieval with Attentive Deep Local Features
ICCV 2017



D2Net

joint detection and description
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Figure 3: Proposed detect-and-describe (D2) network. A feature extraction CNN F is used to extract feature maps that play a dual role:
(i) local descriptors d;; are simply obtained by traversing all the n feature maps D* at a spatial position (i, j); (ii) detections are obtained
by performing a non-local-maximum suppression on a feature map followed by a non-maximum suppression across each descriptor - during
training, keypoint detection scores s;; are computed from a soft local-maximum score o and a ratio-to-maximum score per descriptor 3.

E(Ila 12)

(1) (2)
SC SC
(1) (2) ( (C) n(c))>
ceC quc q

Dusmanu et al, D2-Net: A Trainable CNN for Joint Description and Detection of Local Features CVPR 2019
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Figure 2. Overview of the proposed method.

Yang et al. UR2KiD: Unifying Retrieval, Keypoint Detection, and Keypoint
Description without Local Correspondence Supervision



URZ2KID

(c) UR2KID (ours)

Figure 1. Extremely challenging image matching scenario with se-
vere scale change and significant scene difference between day and
night. The proposed UR2KID method is able to utilize a common
network structure to achieve state-of-the-art results.

Yang et al. UR2KiD: Unifying Retrieval, Keypoint Detection, and Keypoint
Description without Local Correspondence Supervision



SuperGlue
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Paul-Edouard Sarlin, Daniel DeTone, Tomasz Malisiewicz, Andrew Rabinovich: SuperGlue:
Learning Feature Matching with Graph Neural Networks — CVPR 2020



SuperGlue

Attentional Graph Neural Network Optimal Matching Layer
s Attentional Aggregation metching Sinkhorn Algorithm
Ve descriptors partial
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Figure 3: The SuperGlue architecture. SuperGlue is made up of two major components: the attentional graph neural
network (Section 3.1), and the optimal matching layer (Section 3.2). The first component uses a keypoint encoder to map
keypoint positions p and their visual descriptors d into a single vector, and then uses alternating self- and cross-attention
layers (repeated L times) to create more powerful representations f. The optimal matching layer creates an M by N score
matrix, augments it with dustbins, then finds the optimal partial assignment using the Sinkhorn algorithm (for 7" iterations).

Paul-Edouard Sarlin, Daniel DeTone, Tomasz Malisiewicz, Andrew Rabinovich: SuperGlue:
Learning Feature Matching with Graph Neural Networks — CVPR 2020



DeMoN

Ummenhofer et al., DeMoN: Depth and Motion Network for Learning
Monocular Stereo



PoseNet

Single RGB Input Image [
9 54 m

Kendall, Grimes, and Cipolla, PoseNet: A Convolutional Network for
Real-Time 6-DOF Camera Relocalization



Scene Coordinates

3D Scene

Local scene coordinates

Learned: Scene Coordinate Regression

Scene Coordinate
Prediction

Input RGB

80x60

640x480

Brachmann and Rother. Learning Less is More - 6D Camera Localization . . .
via 3D Surface Regression Final Estimate




How good are modern methods?
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“Classical” methods are still quite strong

SuperPoint: 51 inliers

D2Net: 26 inliers, incorrect
geometry

DoG + HardNet: 123 inliers

More later @ Dmytro’s talk!



State-of-the art & future challenges - open questions

How can the current matching paradigm be improved?
Do we still need local features?

Are dense descriptors using FCN needed?

Are attention models related to detectors?

|s end-to-end learning of every stage the best solution?

How to add semantics into the pipeline?



Programme

® (09:00 —10:00 Overview of classical & end-to-end methods
® 10:00 —11:00 Local features: from paper to practice
® 11:00 —12:00 Kornia introduction & hands-on Session



