LOCAL FEATURES: Past, Present & Future

WACV 2019 Tutorial

Vassileios Balntas Scape Technologies

vbalnt.github.io vassileios@scape.io

Introduction to Computer Vision & Image Matching

Pinhole Camera Epipolar Geometry & Fundamental Matrix 3D Reconstruction Method RANSAC RANSAC Homography Some Examples

Classical Methods

The classical matching pipeline Local feature detectors Hand-crafted floating point descriptors Hand-crafted binary descriptors Learning-based floating point descriptors Learning-based binary descriptors

Deep Learning Methods

Deep learning: detectors Deep learning: descriptors

Datasets & Benchmarks

Local feature matching SfM & Reconstruction

Current trends & future challenges

Matching without local features Camera pose estimation & visual localisation Recap & open questions CVPR 2019 Workshops

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Matching images

Applications

- 3D Reconstructions
- Self-driving cars
- Augmented Reality
- Assistance for Visually Impaired

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Augmented Reality

ScavengAR App

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ─ 臣 ─ のへぐ

Assistance

Google Maps AR

◆□ → ◆檀 → ◆臣 → ◆臣 → □臣 □

Building Rome in a few hours

Building Rome in a Day - University of Washington & Microsoft Research

(a)

- 3

Image Matching - Practicality

Matching a set of images enables us to "recover" the geometry of the world from individual images.

Image Matching - Practicality

- Matching a set of images enables us to "recover" the geometry of the world from individual images.
- To understand why, we need to discuss a few things about cameras.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Pinhole Camera Model

World Point

$$\boldsymbol{X} = (X, Y, Z)^T$$

Image Point

$$\mathbf{x} = (\frac{fX}{Z}, \frac{fY}{Z}, f)^T$$

1

¹Hartley and Zisserman, *Multiple view geometry in computer vision*.

Pinhole Camera Model

Homogeneous Coordinates Mapping

$$\begin{pmatrix} fX\\fY\\Z \end{pmatrix} = \begin{pmatrix} f & 0 & 0 & 0\\ 0 & f & 0 & 0\\ 0 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} X\\Y\\Z\\1 \end{pmatrix}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Pinhole Camera Model

World Point

$$\boldsymbol{x} = P\boldsymbol{X}$$

Non-zero principal point

$$\boldsymbol{x} = (\frac{fX}{Z} + p_x, \frac{fY}{Z} + p_y, f)^T$$

Homogeneous Coordinates Mapping

$$\begin{pmatrix} fX\\fY\\Z \end{pmatrix} = \begin{pmatrix} f & 0 & p_x & 0\\ 0 & f & p_y & 0\\ 0 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} X\\Y\\Z\\1 \end{pmatrix}$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ─ 臣 ─ のへぐ

Forward and Backward Projections

Forward Projection (world point to image point)

$$\boldsymbol{x} = P\boldsymbol{x}$$

Backward Projection (image point to world point)

$$oldsymbol{X}(\lambda) = P^+ oldsymbol{x} + \lambda oldsymbol{C}$$

 $P^+ P = I$

Epipolar Geometry

Fig. 9.1. Point correspondence geometry. (a) The two cameras are indicated by their centres C and C' and image planes. The camera centres, 3-space point X, and its images x and x' lie in a common plane π . (b) An image point x back-projects to a ray in 3-space defined by the first camera centre, C, and x. This ray is imaged as a line I' in the second view. The 3-space point X which projects to x must lie on this ray, so the image of X in the second view must lie on Y.

イロト 不得 トイヨト イヨト 二日

Epipolar Geometry

Fig. 9.2. **Epipolar geometry.** (a) The camera baseline intersects each image plane at the epipoles e and e'. Any plane π containing the baseline is an epipolar plane, and intersects the image planes in corresponding epipolar lines 1 and 1'. (b) As the position of the 3D point X varies, the epipolar planes "rotate" about the baseline. This family of planes is known as an epipolar pencil. All epipolar lines intersect at the epipole.

イロト 不得 トイヨト イヨト

Fundamental Matrix F

Fig. 10.1. **Triangulation.** The image points \mathbf{x} and \mathbf{x}' back project to rays. If the epipolar constraint $\mathbf{x}'^{\mathsf{T}}\mathbf{F}\mathbf{x} = 0$ is satisfied, then these two rays lie in a plane, and so intersect in a point \mathbf{X} in 3-space.

For all corresponding points $x \leftrightarrow y$ in two images,

$$x^T F y = 0$$

We can find F by only using pairs of matching points.

Given a set of N correspondences $\mathbf{x}_i \leftrightarrow \mathbf{x}'_i$, find camera matrices P and P' and the 3D points \mathbf{X}_i s.t.

 $egin{aligned} & m{x}_i = Pm{X}_i \ & m{x}_i^{'} = P^{'}m{X}_i^{'} \ & orall i \in [1,N] \end{aligned}$

3D Reconstruction

- Get point correspondences
- Compute F
- Compute camera matrices
- For each point correspondence, compute the point in space that projects to the two image points

Fig. 10.1. **Triangulation.** The image points \mathbf{x} and \mathbf{x}' back project to rays. If the epipolar constraint $\mathbf{x}'^T \mathbf{F} \mathbf{x} = 0$ is satisfied, then these two rays lie in a plane, and so intersect in a point \mathbf{X} in 3-space.

Computation of the Fundamental Matrix F

Objective

Given $n \ge 8$ image point correspondences $\{\mathbf{x}_i \leftrightarrow \mathbf{x}'_i\}$, determine the fundamental matrix F such that $\mathbf{x}_i^T \mathbf{F} \mathbf{x}_i = 0$.

Algorithm

- (i) Normalization: Transform the image coordinates according to x̂_i = Tx_i and x̂'_i = T'x_i', where T and T' are normalizing transformations consisting of a translation and scaling.
- (ii) Find the fundamental matrix $\hat{\mathbf{F}}'$ corresponding to the matches $\hat{\mathbf{x}}_i \leftrightarrow \hat{\mathbf{x}}'_i$ by
 - (a) Linear solution: Determine F̂ from the singular vector corresponding to the smallest singular value of Â, where is composed from the matches x̂_i ↔ x̂'_i as defined in (11.3).
 - (b) Constraint enforcement: Replace \hat{F} by \hat{F}' such that det $\hat{F}' = 0$ using the SVD (see section 11.1.1).

(iii) **Denormalization:** Set $F = T'^T \hat{F}' T$. Matrix F is the fundamental matrix corresponding to the original data $\mathbf{x}_i \leftrightarrow \mathbf{x}'_i$.

Algorithm 11.1. The normalized 8-point algorithm for F.

Computation of the Fundamental Matrix F

In theory

8 correspondences are enough for computing F

Practically

We rely on matching (lots of) interest points between images

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 のへぐ

Matching interest points

Robust estimation of good correspondences

Fischler and Bolles

Algorithm 1 RANSAC

- 1: Select randomly the minimum number of points required to determine the model parameters.
- 2: Solve for the parameters of the model.
- 3: Determine how many points from the set of all points fit with a predefined tolerance $\epsilon.$
- 4: If the fraction of the number of inliers over the total number points in the set exceeds a predefined threshold τ , re-estimate the model parameters using all the identified inliers and terminate.

5: Otherwise, repeat steps 1 through 4 (maximum of N times).

Robust estimation of good correspondences

Estimated coefficients (true, linear regression, RANSAC): 82.1903908407869 [54.17236387] [82.08533159]

Robust estimation of good correspondences

・ * 差 ト - 差 - のへで

Homography

Fig. 13.1. The homography induced by a plane. The ray corresponding to a point x is extended to meet the plane π in a point x_{π} ; this point is projected to a point x' in the other image. The map from x to x' is the homography induced by the plane π . There is a perspectivity, $x' = H_{1\pi}x_{\pi}$, between the world plane π and the first image plane; and a perspectivity, $x' = H_{2\pi}x_{\pi}$, between the world plane and second image plane. The composition of the two perspectivities is a homography, $x' = H_{2\pi}H_{1\pi}^{-1}x = Hx$, between the image plane.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Homography

F generic case

Each point in one image, is matched with a line in the other image

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Homography special property

Each point in one image, is matched with a single point in the other image

Image Matching

Some examples & applications

Panorama

(a) Image 1

(b) Image 2

(c) SIFT matches 1

(d) SIFT matches 2

(e) RANSAC inliers I

(f) RANSAC inliers 2

2

²Brown and Lowe, "Automatic panoramic image stitching using invariant 📒 🕫 🛇

Image rectification

Turboscan App

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ─ 臣 ─ のへぐ

3d Models

Sparse model of central Rome using 21K photos produced by COLMAP's SfM pipeline.

Dense models of several landmarks produced by COLMAP's MVS pipeline.

Colmap https://colmap.github.io/

イロト イヨト イヨト イヨ

Better ways to matching points between two images \downarrow Easier job for RANSAC \downarrow Better 3D models, panoramas, AR apps etc

・ロト ・ 画 ・ ・ 画 ・ ・ 画 ・ 今々ぐ

Classical matching methods

Classical matching methods

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

The "classical" image matching pipeline

- Step 1 Detection: Choose "interesting" points
- Step 2 *Description:* Convert the points to a suitable mathematical representation (descriptor)

Step 3 *Matching:* Match the point descriptors between the two images

Literature terms

Features, Keypoints, Local features, Interest points

Our terminology

Feature frame³

a representation of a specific area/sub-region of an image, characterised by location and shape

³Vedaldi and Fulkerson, *VLFeat: An Open and Portable Library of* Computer Vision Algorithms.

Common types of feature frames

- Point: x, y
- Circle: x, y, ρ
- Rectangle: x, y, w, h
- Oriented Circle: x, y, ρ, θ
- Ellipse: x, y, a, b
- Oriented Ellipse: x, y, a, b, θ

Interest Points

$$\begin{aligned} f(x,y) &= \sum_{(x_k,y_k) \in W} \left(I(x_k,y_k) - I(x_k + \Delta x,y_k + \Delta y) \right)^2 \\ f(x,y) &\approx \sum_{(x,y) \in W} \left(I_x(x,y) \Delta x + I_y(x,y) \Delta y \right)^2 \end{aligned}$$

◆□→ ◆圖→ ◆国→ ◆国→ 三国
Interest Points

 $f(x,y) \approx \begin{pmatrix} \Delta x & \Delta y \end{pmatrix} M \left(\begin{matrix} \Delta x \\ \Delta y \end{matrix} \right)$

$$M = \begin{bmatrix} \sum_{\substack{(x,y) \in W \\ \sum \\ (x,y) \in W \end{bmatrix}} I_x I_y \sum_{\substack{(x,y) \in W \\ (x,y) \in W \\$$

<ロ> (四) (四) (三) (三) (三) (三)

$$M = \begin{bmatrix} \sum_{\substack{(x,y) \in W \\ \sum l_x I_y \\ (x,y) \in W \\ (x,y) \in W \end{bmatrix}} I_x I_y & \sum_{\substack{(x,y) \in W \\ (x,y) \in W \\ (x,y) \in W \end{bmatrix}} I_y^2 \end{bmatrix}$$

 λ_1, λ_2 : Eigenvalues of M

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ─ 臣 ─ のへぐ

 \blacktriangleright $\lambda_1, \lambda_2 \approx 0$

$$M = \begin{bmatrix} \sum_{\substack{(x,y) \in W \\ \sum l_x l_y \\ (x,y) \in W \end{bmatrix}} I_x l_y \sum_{\substack{(x,y) \in W \\ (x,y) \in W \\ (x,$$

 λ_1, λ_2 : Eigenvalues of M

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

$$M = \begin{bmatrix} \sum_{\substack{(x,y) \in W \\ \sum l_x l_y \\ (x,y) \in W \end{bmatrix}} I_x l_y \sum_{\substack{(x,y) \in W \\ (x,y) \in W \\ (x,$$

 λ_1, λ_2 : Eigenvalues of M

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ─ 臣 ─ のへぐ

 $\lambda_1, \lambda_2 \approx 0$ $\lambda_1 \gg \lambda_2$ $\lambda_1 \ll \lambda_2$

$$M = \begin{bmatrix} \sum_{(x,y)\in W} I_x^2 & \sum_{(x,y)\in W} I_x I_y \\ \sum_{(x,y)\in W} I_x I_y & \sum_{(x,y)\in W} I_y^2 \end{bmatrix}$$

 λ_1, λ_2 : Eigenvalues of M

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ● ● ●

 $\lambda_1, \lambda_2 \approx 0$ $\lambda_1 \gg \lambda_2$ $\lambda_1 \ll \lambda_2$ $\lambda_1 \ll \lambda_2$ $\lambda_1 \approx \lambda_2 \gg 0$

Harris Criterion

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ● ● ●

Adding scale estimation

(ロ)、(問)、(E)、(E)、 E

SIFT Detector

⁴Lowe, "Distinctive image features from scale-invariant keypoints". \blacksquare \blacksquare $\bigcirc \bigcirc \bigcirc \bigcirc$

SURF

Fig.1. Left to right: the (discretised and cropped) Gaussian second order partial derivatives in y-direction and xy-direction, and our approximations thereof using box filters. The grey regions are equal to zero.

5

⁵Bay, Tuytelaars, and Van Gool, "Surf: Speeded up robust features" = 🛌 🕤 🤉

KAZE

Fig. 2. Comparison between the Gaussian and nonlinear diffusion scale space for several evolution times t_i. First Row: Gaussian scale space (linear diffusion). The scale space is formed by convolving the original image with a Gaussian kernel of increasing standard deviation. Second Row: Nonlinear diffusion scale space with conductivity function g₃.

Edge Foci

Figure 2. Flow diagram of the detector: (a) input image, (b) normalized gradient \hat{f} , (c) normalized gradients separated into orientations f_i , (d) responses after applying oriented filter $h_i = \hat{f}_i \otimes g_i$, (e) the aggregated results h, and (f) detected interest point.

⁷Zitnick and Ramnath, "Edge foci interest points". $\Box \rightarrow \langle \Box \rangle \rightarrow \langle \Xi \rangle \rightarrow \langle \Xi \rangle \rightarrow \langle \Xi \rangle$

MSER

⁸Matas et al., "Robust wide-baseline stereo from maximally stable extremal regions". $\langle \Box \rangle \langle \Box \rangle \langle \Box \rangle \langle \Box \rangle \langle \Box \rangle \rangle \langle \Box \rangle$

FAST

⁹Rosten and Drummond, "Machine learning for high-speed corner detection".

Feature Frame Detectors - Recap

Many possibilities for types of feature frames

Might include scale & orientation

Figure 8. Visualization of the interest points and their spatial distributions for various detectors on Yosemite image.

From points to descriptors

Detect Regions

Rectify patch around feature frame

From points to descriptors

Detect Regions

Rectify patch around feature frame

◆□→ ◆◎→ ◆□→ ◆□→ □ □

Local Descriptor

A *vectorial representation* of the patch around a feature frame which is more a discriminative and robust than the patch.

Importance of orientation

Importance of orientation

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - シ۹ペ

From points to descriptors

ZMUV descriptor

- > Zeroed-mean-unit-variance patch (*ZMUV*) normalisation, which is defined as $\hat{\boldsymbol{p}} = \frac{mean(\boldsymbol{p})}{std(\boldsymbol{p})}$.
- not invariant to simple geometric deformations.
- In addition, the dimensionality of such a descriptor can be very high even for very small normalised patches e.g. it can reach 2¹⁰ for a 32 × 32 patch.

Descriptor definition

Given a patch $\mathbf{x} \in \mathbb{R}^{N \times N}$, a descriptor is the result $f_{\mathbf{x}} \in \mathbb{R}^{D}$ of a function fwith $D < N \times N$ (ideally) and $f_{\mathbf{x}}$ more robust to geometric noise

than the vector \mathbf{x} (flattened list of pixel illuminations).

Descriptor Categorisation

Output type

- Floating point
- Binary
- Hand-crafted vs. learning
 - Engineered / Hand Crafted Methods

Learning-based methods

Hand-crafted floating point descriptors

<ロト < 団ト < 三ト < 三ト < 三 の Q (P)</p>

SIFT Descriptor

- The local spatial pooling of the descriptor is based on a rectangular grid that partitions the patch into several regions.
- Assuming the patch is divided into *M* rectangular areas, and the gradients are quantised to *K* angle bins, the resulting *K* dimensional histograms concatenated from *M* areas, will be represented by a point in the R^{M*K} space.
- In the case of the original implementation of SIFT, 16 grid quanta were combined with 8 angular bins, resulting in final dimensionality of 128.

SIFT Descriptor

◆□ ▶ ◆■ ▶ ◆ ■ ▶ ◆ ■ ● ● ● ●

GLOH

 $^{10}\mbox{Mikolajczyk}$ and Schmid, "A performance evaluation of local descriptors" $_{\Xi}$

CHoG

¹¹Chandrasekhar et al., "CHoG: Compressed histogram of gradients a low bit-rate feature descriptor".

Daisy

Fig. 6. The DAISY descriptor: Each circle represents a region where the radius is proportional to the standard deviations of the Gaussian kernels and the "+" sign represents the locations where we sample the convolved orientation maps center being a pixel location where we compute the descriptor. By overlapping the regions, we achieve smooth transitions between the regions and a degree of rotational robustness. The radii of the outer regions are increased to have an equal sampling of 12 the rotational axis, which is necessary for robustness against rotation.

¹²Tola, Lepetit, and Fua, "Daisy: An efficient dense descriptor applied to wide-baseline stereo". ◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

LIOP

 $^{^{13}}$ Zhenhua Wang and Wu, "Local Intensity Order Pattern for Feature Description".

LUCID

```
[~, desc1] = sort(p1(:));
[~, desc2] = sort(p2(:));
distance = sum(desc1 ~= desc2);
```


¹⁴Ziegler et al., "Locally uniform comparison image descriptor". E + (E +) E -) a C

Aggregation across scales and viewpoints

Several methods identified that aggregation across different scales or different affine viewpoints into a single feature vector can improve the discriminative power of the descriptor, albeit at the price of much higher computational cost

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 のへぐ

ASIFT

DSP-SIFT

¹⁶Dong and Soatto, "Domain-size pooling in local descriptors: DSP-SIFT" = -0.00

ASV

¹⁷Yang, Lin, and Chuang, "Accumulated Stability Voting: A Robust Descriptor From Descriptors of Multiple Scales". Hand-crafted binary descriptors

Hashing SIFT

 $^{18}\mbox{Terasawa}$ and Tanaka, "Spherical lsh for approximate nearest neighbor search on unit hypersphere".

¹⁹Strecha et al., "LDAHash: Improved matching with smaller descriptors". 🚊 👒

BRIEF

 20 Calonder et al., "Brief: Binary robust independent elementary features". = 990
BRISK

Figure 3. The BRISK sampling pattern with N = 60 points: the small blue circles denote the sampling locations; the bigger, red dashed circles are drawn at a radius σ corresponding to the standard deviation of the Gaussian kernel used to smooth the intensity values at the sampling points. The pattern shown applies to a scale of t = 1.

²¹Leutenegger, Chli, and Siegwart, "BRISK: Binary robust invariant scalable keypoints".

FREAK

Figure 4: Illustration of the FREAK sampling pattern similar to the retinal ganglion cells distribution with their corresponding receptive fields. Each circle represents a receptive field where the image is smoothed with its corresponding Gaussian kernel. 22

²²Alahi, Ortiz, and Vandergheynst, "Freak: Fast retina keypoint"... (\mathbb{R})

Learning-based floating point descriptors

PCA-SIFT

Collect a matrix $X \in \mathbb{R}^{N \times D}$ with N descriptors of dimensionality D

 $C = X^T X$ $C = U \Sigma V$

Use the first *K* eigenvectors from *U* to project *X* to a new descriptor of size *K*. $X_k = U_k X^{23}$

²³Ke and Sukthankar, "PCA-SIFT: A more distinctive representation for local image descriptors".

PCA-SIFT

PCA

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Picking the best Daisy

 24 Calonder et al., "Brief: Binary robust independent elementary features". Ξ

Linear projections

$$\mathbf{u_{LDP}} = \arg \max_{\mathbf{u}} \frac{\sum_{(i,j)\in\mathcal{D}} \|\mathbf{u}^T\mathbf{x}_i - \mathbf{u}^T\mathbf{x}_j\|^2}{\sum_{(i,j)\in\mathcal{S}} \|\mathbf{u}^T\mathbf{x}_i - \mathbf{u}^T\mathbf{x}_j\|^2}$$
$$= \arg \max_{\mathbf{u}} \frac{\mathbf{u}^T C_D \mathbf{u}}{\mathbf{u}^T C_S \mathbf{u}}$$
(2)

Where C_{D} and C_{S} represent the inter- and intra-class covariance matrices of differently labeled points (unmatched features in image descriptor space) and same labeled points (matched features), respectively.

$$C_{\mathcal{D}} \stackrel{\text{def}}{=} \sum_{(i,j)\in\mathcal{D}} (\mathbf{x}_i - \mathbf{x}_j) (\mathbf{x}_i - \mathbf{x}_j)^T$$
(3)

$$C_{\mathcal{S}} \stackrel{\text{def}}{=} \sum_{(i,j)\in\mathcal{S}} (\mathbf{x}_i - \mathbf{x}_j) (\mathbf{x}_i - \mathbf{x}_j)^T \tag{4}$$

Note that these are not the same matrices as the betweenclass S_B and within-class scatters S_W in equation (1) for LDA, although they are related (see section 3.3). The solution is the generalized eigenvectors:

$$U = \operatorname{eig}(C_{\mathcal{S}}^{-1}C_{\mathcal{D}}) \tag{5}$$

The projection matrix is $U \in \mathbb{R}^{m \times m'}$, with $m' \le m$ eigenvectors corresponding to the m' largest eigenvalues. 25

²⁵Cai, Mikolajczyk, and Matas, "Learning linear discriminant projections for dimensionality reduction of image descriptors".

Linear projections

²⁶Cai, Mikolajczyk, and Matas, "Learning linear discriminant projections for dimensionality reduction of image descriptors".

Convex optimisation for learning descriptors

Learn optimal configuration of gaussian filters s.t.

$$\min_{\mathbf{y}\in P(\mathbf{x})} d_{\eta}(\mathbf{x}, \mathbf{y}) < \min_{\mathbf{u}\in N(\mathbf{x})} d_{\eta}(\mathbf{x}, \mathbf{u}),$$

²⁷Simonyan, Vedaldi, and Zisserman, "Learning Local Feature Descriptors Using Convex Optimisation." Learning-based binary descriptors

- Instead of random intensity tests (as in BRIEF), select tests based on data
- Choose tests with maximum variance across different samples & minimum correlation between them.
- No need for pairs of labelled positive and negative patches

28

²⁸Rublee et al., "ORB: An efficient alternative to SIFT or SURF". $A \equiv A = A \otimes A \otimes A$

Figure 6. A subset of the binary tests generated by considering high-variance under orientation (left) and by running the learning algorithm to reduce correlation (right). Note the distribution of the tests around the axis of the keypoint orientation, which is pointing up. The color coding shows the maximum pairwise correlation of each test, with black and purple being the lowest. The learned tests clearly have a better distribution and lower correlation.

LATCH

Triplets of comparisons instead of pairs

 $^{^{29}\}text{Levi}$ and Hassner, "LATCH: learned arrangements of three patch codes". $\underline{=}$

DBRIEF

³⁰Trzcinski and Lepetit, "Efficient Discriminative Projections for Compact Binary Descriptors".

Boosting

Boosting

Figure 4. Visualization of the selected weak learners for the first 8 bits learned on 200k pairs of 32×32 patches from the Notre Dame dataset (best viewed on screen). For each pixel of the figure we show the average orientation weighted by the weights of the weak learners b_d. For different bits, the weak learners cluster about different regions and orientations illustrating their complementary nature.

▲白 ▶ ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ 二 臣

32

³²Balntas, Tang, and Mikolajczyk, "BOLD - Binary Online Learned Descriptor For Efficient Image Matching".

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ = のへで

◆□ > < 団 > < 豆 > < 豆 > < 豆 > < □ > <</p>

◆□ > < 団 > < 豆 > < 豆 > < 豆 > < □ > <</p>

Deep Learning Era

Image: Nicolas Audebert

イロト イヨト イヨト イヨト

Deep learning: detectors

TILDE

(a) Stack of training images

(b) Desired response on positive samples

(d) Keypoints detected in the new image

33

³³Verdie et al., "TILDE: A Temporally Invariant Learned DEtector". 📳 💿 🖉

Learning a detector by ranking

Figure 1. Left: an image undergoes a perspective change transformation. Right: our learned response function, visualized as a heat map, produces a ranking of image locations that is reasonably invariant under the transformation. Since the resulting ranking is largely repeatable, the top/bottom quantiles of the response function are also repeatable (examples of interest points are shown by arrows).

³⁴

³⁴Savinov et al., *Quad-networks: unsupervised learning to rank for interest point detection.* $(\square) (\square$

Learning a detector by ranking

Figure 2. Quad-network forward pass on a training quadruple. Patches (1, 3) and (2, 4) are correspondence pairs between two different images, so 1, 2 come from the first image and 3, 4 come from the second image. All of the patches are extracted with a random rotation.

Learning covariant detectors

Fig. 4: Training and validation patches. Example of training triplets (x_1, x_2, g) $(x_1$ above and $x_2 = gx_1$ below) for different detectors. The figure also shows "easy" and "hard" patch pairs, extracted from the validation set based on the value of the loss (16). The crosses and bars represent respectively the detected translation and orientation, as learned by DETNET-L and ROTNET-L. 36

Learning Discriminative and Transformation Covariant Local Feature Detectors

Learning to assign orientations

Deep learning: descriptors

2008 work

Early work on learning convolutional neural networks as feature descriptors specifically for local patches, but was not immediately followed

 39 Jahrer, Grabner, and Bischof, "Learned local descriptors for recognition and matching".

2008 work

Early work on learning convolutional neural networks as feature descriptors specifically for local patches, but was not immediately followed

40

 40 Jahrer, Grabner, and Bischof, "Learned local descriptors for recognition and matching".

2014 work

Such features outperform the performance of descriptors resulting from convex optimisation.

⁴¹Fischer, Dosovitskiy, and Brox, "Descriptor Matching with Convolutional Neural Networks: a Comparison to SIFT".

DeepCompare

 42 Zagoruyko and Komodakis, "Learning to Compare Image Patches via Convolutional Neural Networks".

DeepCompare

Figure 3. A central-surround two-stream network that uses a siamese-type architecture to process each stream. This results in 4 branches in total that are given as input to the top decision layer (the two branches in each stream are shared in this case).

43

⁴³Zagoruyko and Komodakis, "Learning to Compare Image Patches via Convolutional Neural Networks".

DeepDesc

⁴⁴Simo-Serra et al., "Discriminative Learning of Deep Convolutional Feature Point Descriptors".

DeepDesc

⁴⁵Simo-Serra et al., "Discriminative Learning of Deep Convolutional Feature Point Descriptors".
MatchNet

A: Feature network B: Metric network FC3 + Softmax Conv4 C: MatchNet in training Conv3 Conv2 Metric network Conv1 Conv0 Preprocessing Sampling

-				
Name	Type	Output Dim.	PS	S
Conv0	С	$64 \times 64 \times 24$	7×7	1
Pool0	MP	$32 \times 32 \times 24$	3×3	2
Conv1	С	$32 \times 32 \times 64$	5×5	1
Pool1	MP	$16 \times 16 \times 64$	3×3	2
Conv2	С	$16 \times 16 \times 96$	3×3	1
Conv3	С	$16 \times 16 \times 96$	3×3	1
Conv4	С	$16 \times 16 \times 64$	3×3	1
Pool4	MP	$8 \times 8 \times 64$	3×3	2
Bottleneck	FC	В	-	-
FC1	FC	F	-	-
FC2	FC	F	-	-
FC3	FC	2	-	-

⁴⁶Han et al., "MatchNet: Unifying Feature and Metric Learning for Patch-Based Matching". ◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

TFeat

where

$$l_{rank}(\delta_+, \delta_-) = max(0, \mu + \delta_+ - \delta_-)$$

$$47$$

⁴⁷Vassileios Balntas and Mikolajczyk, "Learning local feature descriptors with triplets and shallow convolutional neural networks".

TFeat

L2-Net

⁴⁹Tian, Fan, and Wu, "L2-Net: Deep Learning of Discriminative Patch Descriptor in Euclidean Space".

HardNet

⁵⁰Mishchuk et al., "Working hard to know your neighbor's margins: Local descriptor learning loss".

Spread out descriptor

Figure 2. Probability density of inner product of two points which are independently and uniformly sampled from the unit sphere in *d*-dimensional space. We can see that, in high dimensional space, most pairs are close to orthogonal.

Datasets & Benchmarks

Oxford Matching Benchmark

Measures descriptor performance in image matching task

NN matching

Oxford Matching Protocol

Two local frames A and B are matched if $||D_A - D_B||_2^2 < \tau$

 $\blacktriangleright \ recall = \frac{\#correct \ matches}{\#correspondences}$

1-precision = #correct matches + #false matches

Performance curves

Inconsistency in evaluation results - Oxford Benchmark

	LIOP outperforms SIFT	SIFT outperforms LIOP		
-	[Miksik and Mikolajczyk, 2012]	[Tsun-Yi Yang and Chuang, 2016]		
	[Wang et al., 2011b]			
	BRISK outperforms SIFT	SIFT outperforms BRISK		
	Leutenegger et al. [2011]	[Levi and Hassner, 2016]		
	Miksik and Mikolajczyk [201	2]		
	ORB outperforms SIFT	SIFT outperforms ORB		
	Rublee et al. [2011] M	fiksik and Mikolajczyk [2012]		
	BinBoost outperforms SIFT	SIFT outperforms BinBoost		
	[Levi and Hassner, 2016]	[Balntas et al., 2015]		
	[T. Trzcinski and Lepetit, 2013]	[Tsun-Yi Yang and Chuang, 2016]		
	ORB outperforms BRIEF	BRIEF outperforms ORB		
	(m	[T] TT		

Rublee et al., 2011 Levi and Hassner, 201	[Rublee et al., 2011]	Levi and Hassner	. 2016
---	-----------------------	------------------	--------

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ─ 臣 ─ のへぐ

Inconsistency in evaluation results - Oxford Benchmark

-Detections - - Measurement regions

- no strict protocol for patch extraction and normalisation
- no strict protocol for detector configuration
- no standardised measurement region

Inconsistency in evaluation results - Oxford Benchmark

mAP: mean area under performance curves

descr	1 2	1 3	1 4
SIFT vl_sift	0.47	0.40	0.46
SIFT vl_covdet	0.32	0.14	0.18

method	paper
vl_sift	ASV [CVPR 2016], DSP-SIFT [CVPR 2015]
vl_covdet	BinBoost [PAMI 2015], BOLD [CVPR 2015]

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ─ 臣 ─ のへぐ

From images to patches

▲□▶▲圖▶★≧▶★≧▶ 差 のへで

Phototourism Patch Datasets

Pre-extracted patches arranged in matching and non-matching pairs

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ─ 臣 ─ のへぐ

Phototourism Patch Datasets - Evaluation

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Phototourism Patch Datasets - Evaluation Issues

Phototourism Patch Datasets - Evaluation Issues

 Patch verification (yes/no) different problem than matching (match all with all)

◆□→ ◆◎→ ◆□→ ◆□→ □ □

No single task should be used for evaluating a method

HPatches Dataset

 52 Balntas et al., "HPatches: A Benchmark and Evaluation of Handcrafted and Learned Local Descriptors".

HPatches Dataset

HPatches tasks

HPatches results

Baseline results

SfM Benchmark

Sparse model of central Rome using 21K photos produced by COLMAP's SfM pipeline.

Dense models of several landmarks produced by COLMAP's MVS pipeline.

⁵³Schönberger et al., "Comparative Evaluation of Hand-Crafted and Learned Local Features".

SfM Benchmark

		# Images	# Registered	# Sparse Points	# Observations	Track Length	Reproj. Error	# Inlier Pairs	# Inlier Matches	# Dense Points
Fountain	SIFT	11	11	10,004	44K	4.49	0.30px	49	76K	2,970K
	SIFT-PCA		11	14,608	70K	4.80	0.39px	55	124K	3,021 K
	DSP-SIFT		11	14,785	71K	4.80	0.41px	54	129K	2,999K
	ConvOpt		11	14,179	67K	4.75	0.37px	55	114K	2,999K
	DeepDesc		11	13,519	61K	4.55	0.35px	55	93K	2,972K
	TFeat		11	13,696	64K	4.68	0.35px	54	103K	2,969K
	LIFT		11	10,172	46K	4.55	0.59px	55	83K	3,019K
Herzjesu	SIFT	8	8	4,916	19 K	4.00	0.32px	27	28K	2,373K
	SIFT-PCA		8	7,433	31K	4.19	0.42px	28	47K	2,372K
	DSP-SIFT		8	7,760	32K	4.19	0.45px	28	50K	2,376K
	ConvOpt		8	6,939	28K	4.13	0.40px	28	42K	2,375K
	DeepDesc		8	6,418	25K	3.92	0.38px	28	34K	2,380K
	TFeat		8	6,606	27K	4.09	0.38px	28	38K	2,377K
	LIFT		8	7,834	30K	3.95	0.63px	28	46K	2,375K
South Building	SIFT	128	128	62,780	353K	5.64	0.42px	1K	1,003K	1,972K
	SIFT-PCA		128	107,674	650K	6.04	0.54px	3K	2,019K	1,993K
	DSP-SIFT		128	110,394	664K	6.02	0.57px	3K	2,079K	1,994K
	ConvOpt		128	103,602	617K	5.96	0.51px	4K	1,856K	2,007K
	DeepDesc		128	101,154	558K	5.53	0.48px	6K	1,463K	2,002K
	TFeat		128	94,589	566K	5.99	0.49px	3K	1,567K	1,960K
	LIFT		128	74,607	399K	5.35	0.78px	3K	1,168K	1,975K
Madrid Metropolis	SIFT	1,344	440	62,729	416K	6.64	0.53px	14K	1,740K	435K
	SIFT-PCA		465	119,244	702K	5.89	0.57px	27K	3,597K	537K
	DSP-SIFT		476	107,028	681K	6.36	0.64px	21K	3,155K	570K
	ConvOpt		455	115,134	634K	5.51	0.57px	29K	3,148K	561K
	DeepDesc		377	68,110	348K	5.11	0.53px	19K	1,570K	516K
	TFeat		439	90,274	512K	5.68	0.54px	18K	2,135K	522K
	LIFT		430	52,755	337K	6.40	0.76px	13K	1,498K	450K
Gendarmenmarkt	SIFT	1,463	950	169,900	1,010K	5.95	0.64px	28K	3,292K	1,104K
	SIFT-PCA		953	272,118	1,477K	5.43	0.69px	43K	5,137K	1,240K
	DSP-SIFT		975	321,846	1,732K	5.38	0.74px	56K	7,648K	1,505K
	ConvOpt		945	341,591	1,601K	4.69	0.70px	56K	6,525K	1,342K
	DeepDesc		809	244,925	949K	3.88	0.68px	31 K	2,849K	921K
	TFeat		953	297,266	1,445K	4.86	0.66px	39K	4,685K	1,181K 5
	LIFT		942	180,746	964K	5.34	0.83px	27K	2.495K	1,386K

⁵⁴Schönberger et al., "Comparative Evaluation of Hand-Crafted and Learned Local Features".

Current trends & future challenges

Matching without local features

LIFT

LIFT

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 → ���

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ○ のへ⊙

LF-Net

(a) The LF-Net architecture. The *detector* network generates a scale-space score map along with dense orientation estimates, which are used to select the keypoints. Image patches around the chosen keypoints are cropped with a differentiable sampler (STN) and fed to the *descriptor* network, which generates a descriptor for each patch.

⁵⁶Ono et al., "LF-Net: Learning Local Features from∃mages".< ≧ → < ≧ → < ⊘ < ⊘

Learning correspondences

Superpoint

⁵⁸DeTone, Malisiewicz, and Rabinovich, "SuperPoint: Self-Supervised Interest Point Detection and Description".

Implicitly Matched Interest Points (IMIPs)

Figure 1. We propose a CNN interest point detector which provides implicitly matched interest points — descriptors are not needed for matching. This image illustrates the output of the final layer, which determines the interest points. Hue indicates which channel has the strongest response for a given pixel, and brightness indicates that response. Circles indicate the 128 interest points, which are the global maxima of each channel, circle thicknesses indicate confidence in a point. Lines indicate the interest points, P3P localization.

⁶⁰Kendall, Grimes, and Cipolla, "PoseNet: A Convolutional Network for Real-Time 6-DOF Camera Relocalization".

Local scene coordinates

⁶¹Brachmann and Rother, "Learning Less is More - 6D Camera Localization via 3D Surface Regression".

DeMoN

⁶²Ummenhofer et al., "DeMoN: Depth and Motion Network for Learning Monocular Stereo".

æ
Unsupervised learning of camera transformation

(a) Training: unlabeled video clips.

(b) Testing: single-view depth and multi-view pose estimation.⁶³

 63 Zhou et al., "Unsupervised Learning of Depth and Ego-Motion from Video".

Open questions - Benchmarking

- Are matching benchmarks representative?
- How can we correctly evaluate methods by eliminating other nuisance factors?

State-of-the art & future challenges - open questions

- How can the current matching paradigm be improved?
- Do we still need local features?
- Are dense descriptors using FCN needed?
- Are attention models related to detectors?
- Is end-to-end learning of every stage the best solution?

How to add semantics into the pipeline?

Figure 1. Image representation with contextual feature reweighting. (a) A contextual reweighting network takes convolutional features of a deep CNN as input to produce a spatial weighting mask (b) based on the learned contexts. The mask is used for weighted aggregation of input features to produce the representation of the input image (c). 64

⁶⁴Kim, Dunn, and Frahm, "Learned Contextual Feature Reweighting for Image Geo-Localization".

Long-Term Visual Localization under Changing Conditions T.Sattler, V. Balntas, M. Pollefeys, K. Mikolajczyk, J. Sivic, T. Pajdla, L. Hammarstrand, H. Heijnen, F. Kahl, W. Maddern, C. Toft, A. Torii Includes a Challenge on Local Features

Image Matching: Local Features and Beyond

V. Balntas, E. Trulls, K.M. Yi, J. Shonberger, V. Lepetit *Includes a Challenge on Local Features*

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 のへぐ

The End - Thanks

Please consider taking part in the CVPR 2019 workshop challenges!

