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Matching images



Applications

I 3D Reconstructions

I Self-driving cars

I Augmented Reality

I Assistance for Visually Impaired



Augmented Reality

ScavengAR App



Assistance

Google Maps AR



Building Rome in a few hours

Building Rome in a Day - University of Washington & Microsoft
Research



Image Matching - Practicality

I Matching a set of images enables us to “recover” the
geometry of the world from individual images.

I To understand why, we need to discuss a few things about
cameras.
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Pinhole Camera Model

World Point
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Image Point
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1

1Hartley and Zisserman, Multiple view geometry in computer vision.



Pinhole Camera Model

Homogeneous Coordinates Mapping
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Pinhole Camera Model

World Point

x = PX

Non-zero principal point
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Homogeneous Coordinates Mapping
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Forward and Backward Projections

Forward Projection (world point to image point)

x = Px

Backward Projection (image point to world point)

X (λ) = P+x + λC
P+P = I



Epipolar Geometry



Epipolar Geometry



Fundamental Matrix F

For all corresponding points x ↔ y in two images,

xTFy = 0

We can find F by only using pairs of matching points.



3D Reconstruction

Given a set of N correspondences xi ↔ x ′
i , find camera matrices P

and P
′

and the 3D points Xi s.t.

xi = PXi

x
′
i = P

′
X

′
i

∀i ∈ [1,N]



3D Reconstruction

I Get point correspondences

I Compute F

I Compute camera matrices

I For each point correspondence, compute the point in space
that projects to the two image points



Computation of the Fundamental Matrix F



Computation of the Fundamental Matrix F

In theory

8 correspondences are enough for computing F

Practically

We rely on matching (lots of) interest points between images



Matching interest points



Robust estimation of good correspondences

Fischler and Bolles



Robust estimation of good correspondences

sklearn

Estimated coefficients (true, linear regression, RANSAC):
82.1903908407869 [54.17236387] [82.08533159]



Robust estimation of good correspondences



Homography



Homography

F generic case

Each point in one image, is matched with a line in the other image

Homography special property

Each point in one image, is matched with a single point in the
other image



Image Matching

Some examples & applications



Panorama

2
2Brown and Lowe, “Automatic panoramic image stitching using invariant

features”.



Image rectification

Turboscan App



3d Models

Colmap https://colmap.github.io/

https://colmap.github.io/


Recap

Better ways to matching points between two images
↓

Easier job for RANSAC
↓

Better 3D models, panoramas, AR apps etc



Classical matching methods

Classical matching methods



The “classical” image matching pipeline

Image A Image B

Step 1 Detection: Choose “interesting” points

Step 2 Description: Convert the points to a suitable mathematical
representation (descriptor)

Step 3 Matching: Match the point descriptors between the two
images



Terminology

Literature terms
Features, Keypoints, Local features, Interest points

Our terminology

Feature frame3

a representation of a specific area/sub-region of an image,
characterised by location and shape

3Vedaldi and Fulkerson, VLFeat: An Open and Portable Library of
Computer Vision Algorithms.



Common types of feature frames

I Point: x , y

I Circle: x , y , ρ

I Rectangle: x , y ,w , h

I Oriented Circle: x , y , ρ, θ

I Ellipse: x , y , a, b

I Oriented Ellipse: x , y , a, b, θ



Interest Points

f (x , y) =
∑

(xk ,yk )∈W
(I (xk , yk)− I (xk + ∆x , yk + ∆y))2

f (x , y) ≈ ∑
(x ,y)∈W

(Ix(x , y)∆x + Iy (x , y)∆y)2



Interest Points

f (x , y) ≈
(
∆x ∆y

)
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∆x
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)
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Harris Corners
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I λ1 � λ2

I λ1 ≈ λ2 � 0
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Harris Criterion



Adding scale estimation



SIFT Detector

4

4Lowe, “Distinctive image features from scale-invariant keypoints”.



SURF

5

5Bay, Tuytelaars, and Van Gool, “Surf: Speeded up robust features”.



KAZE

6

6Alcantarilla, Bartoli, and Davison, “KAZE features”.



Edge Foci

7

7Zitnick and Ramnath, “Edge foci interest points”.



MSER

8

8Matas et al., “Robust wide-baseline stereo from maximally stable extremal
regions”.



FAST

9

9Rosten and Drummond, “Machine learning for high-speed corner
detection”.



Feature Frame Detectors - Recap

I Many possibilities for types of feature frames

I Might include scale & orientation



From points to descriptors

Detect Regions

Rectify patch around
feature frame



From points to descriptors

Detect Regions

Rectify patch around
feature frame

Local Descriptor

A vectorial representation of the patch around a feature frame
which is more a discriminative and robust than the patch.



Importance of orientation



Importance of orientation



From points to descriptors

ZMUV descriptor

I Zeroed-mean-unit-variance patch (ZMUV ) normalisation,

which is defined as p̂ = mean(p)
std(p) .

I not invariant to simple geometric deformations.

I In addition, the dimensionality of such a descriptor can be
very high even for very small normalised patches e.g. it can
reach 210 for a 32× 32 patch.



Descriptor definition

Given a patch x ∈ RN×N , a descriptor is the result fx ∈ RD of a
function f

with D < N × N (ideally) and fx more robust to geometric noise
than the vector x (flattened list of pixel illuminations).



Descriptor Categorisation

I Output type
I Floating point
I Binary

I Hand-crafted vs. learning
I Engineered / Hand Crafted Methods
I Learning-based methods



Hand-crafted floating point descriptors



SIFT Descriptor

I The local spatial pooling of the descriptor is based on a
rectangular grid that partitions the patch into several regions.

I Assuming the patch is divided into M rectangular areas, and
the gradients are quantised to K angle bins, the resulting K
dimensional histograms concatenated from M areas, will be
represented by a point in the RM∗K space.

I In the case of the original implementation of SIFT, 16 grid
quanta were combined with 8 angular bins, resulting in final
dimensionality of 128.



SIFT Descriptor



GLOH

10

10Mikolajczyk and Schmid, “A performance evaluation of local descriptors”.



CHoG

11

11Chandrasekhar et al., “CHoG: Compressed histogram of gradients a low
bit-rate feature descriptor”.



Daisy

12
12Tola, Lepetit, and Fua, “Daisy: An efficient dense descriptor applied to

wide-baseline stereo”.



LIOP

13

13Zhenhua Wang and Wu, “Local Intensity Order Pattern for Feature
Description”.



LUCID

14

14Ziegler et al., “Locally uniform comparison image descriptor”.



Aggregation across scales and viewpoints

Several methods identified that aggregation across different scales
or different affine viewpoints into a single feature vector can

improve the discriminative power of the descriptor, albeit at the
price of much higher computational cost



ASIFT

15

15Yu and Morel, “ASIFT: An algorithm for fully affine invariant comparison”.



DSP-SIFT

16

16Dong and Soatto, “Domain-size pooling in local descriptors: DSP-SIFT”.



ASV

17

17Yang, Lin, and Chuang, “Accumulated Stability Voting: A Robust
Descriptor From Descriptors of Multiple Scales”.



Hand-crafted binary descriptors



Hashing SIFT

Image from Haisheng Li.
1819

18Terasawa and Tanaka, “Spherical lsh for approximate nearest neighbor
search on unit hypersphere”.

19Strecha et al., “LDAHash: Improved matching with smaller descriptors”.



BRIEF

20

20Calonder et al., “Brief: Binary robust independent elementary features”.



BRISK

21

21Leutenegger, Chli, and Siegwart, “BRISK: Binary robust invariant scalable
keypoints”.



FREAK

22

22Alahi, Ortiz, and Vandergheynst, “Freak: Fast retina keypoint”.



Learning-based floating point descriptors



PCA-SIFT

Collect a matrix X ∈ RN×D with N descriptors of dimensionality D

C = XTX

C = UΣV

Use the first K eigenvectors from U to project X to a new
descriptor of size K . Xk = UkX

23

23Ke and Sukthankar, “PCA-SIFT: A more distinctive representation for
local image descriptors”.



PCA-SIFT



Picking the best Daisy

24

24Calonder et al., “Brief: Binary robust independent elementary features”.



Linear projections

25

25Cai, Mikolajczyk, and Matas, “Learning linear discriminant projections for
dimensionality reduction of image descriptors”.



Linear projections

26

26Cai, Mikolajczyk, and Matas, “Learning linear discriminant projections for
dimensionality reduction of image descriptors”.



Convex optimisation for learning descriptors

Learn optimal configuration of gaussian filters s.t.

27

27Simonyan, Vedaldi, and Zisserman, “Learning Local Feature Descriptors
Using Convex Optimisation.”



Learning-based binary descriptors



ORB

I Instead of random intensity tests (as in BRIEF), select tests
based on data

I Choose tests with maximum variance across different samples
& minimum correlation between them.

I No need for pairs of labelled positive and negative patches

28

28Rublee et al., “ORB: An efficient alternative to SIFT or SURF”.



ORB



LATCH

Triplets of comparisons instead of pairs

29

29Levi and Hassner, “LATCH: learned arrangements of three patch codes”.



DBRIEF

Learning of wi and ti
30

30Trzcinski and Lepetit, “Efficient Discriminative Projections for Compact
Binary Descriptors”.



Boosting

31

31Trzcinski et al., “Boosting Binary Keypoint Descriptors”.



Boosting



BOLD

Overview of the proposed BOLD descriptor

query patch A online creation of synthesised views BOLDA

query patch B online creation of synthesised views BOLDB

1

32

32Balntas, Tang, and Mikolajczyk, “BOLD - Binary Online Learned
Descriptor For Efficient Image Matching”.



BOLD

Patch Descriptor

A

B

DA

DB

=[dA1, dA2 . . . dAD]

[dB1, dB2 . . . dBD]
�(DA, DB)

= } Distance

Typical descriptors

MA

MB

[0, 1 . . . 1]

[1, 0 . . . 0]
�(DA, MA, DB, MB)

Patch Descriptor

DistanceA

B

DA

DB

=[dA1, dA2 . . . dAD]

[dB1, dB2 . . . dBD]=
}

Stable descriptor
dimensions

=

=

Locally learned BOLD



BOLD



BOLD



Deep Learning Era

Image: Nicolas Audebert



Deep learning: detectors



TILDE

33

33Verdie et al., “TILDE: A Temporally Invariant Learned DEtector”.



Learning a detector by ranking

34

34Savinov et al., Quad-networks: unsupervised learning to rank for interest
point detection.



Learning a detector by ranking

35

35Savinov et al., Quad-networks: unsupervised learning to rank for interest
point detection.



Learning covariant detectors

36

36Lenc and Vedaldi, Learning Covariant Feature Detectors.



Learning Discriminative and Transformation Covariant
Local Feature Detectors

37

37Lenc and Vedaldi, Learning Covariant Feature Detectors.



Learning to assign orientations

38
38Yi et al., “Learning to Assign Orientations to Feature Points”.



Deep learning: descriptors



2008 work

Early work on learning convolutional neural networks as feature
descriptors specifically for local patches, but was not immediately

followed

39

39Jahrer, Grabner, and Bischof, “Learned local descriptors for recognition
and matching”.



2008 work

Early work on learning convolutional neural networks as feature
descriptors specifically for local patches, but was not immediately

followed

40

40Jahrer, Grabner, and Bischof, “Learned local descriptors for recognition
and matching”.



2014 work

Results shown in41 that the features from the last layer of a
convolutional deep network trained on ImageNet dataset collected

for general objects classification can outperform SIFT.

Such features outperform the performance of descriptors resulting
from convex optimisation.

41Fischer, Dosovitskiy, and Brox, “Descriptor Matching with Convolutional
Neural Networks: a Comparison to SIFT”.



DeepCompare

42

42Zagoruyko and Komodakis, “Learning to Compare Image Patches via
Convolutional Neural Networks”.



DeepCompare

43

43Zagoruyko and Komodakis, “Learning to Compare Image Patches via
Convolutional Neural Networks”.



DeepDesc

44

44Simo-Serra et al., “Discriminative Learning of Deep Convolutional Feature
Point Descriptors”.



DeepDesc

45

45Simo-Serra et al., “Discriminative Learning of Deep Convolutional Feature
Point Descriptors”.



MatchNet

46

46Han et al., “MatchNet: Unifying Feature and Metric Learning for
Patch-Based Matching”.



TFeat

47

47Vassileios Balntas and Mikolajczyk, “Learning local feature descriptors with
triplets and shallow convolutional neural networks”.



TFeat

48

48Vassileios Balntas and Mikolajczyk, “Learning local feature descriptors with
triplets and shallow convolutional neural networks”.



L2-Net

I Distance matrix loss:
√

2(1− Y T
1 Y2)

I De-corellation loss: Y T
1 Y1

49

49Tian, Fan, and Wu, “L2-Net: Deep Learning of Discriminative Patch
Descriptor in Euclidean Space”.



HardNet

50

50Mishchuk et al., “Working hard to know your neighbor’s margins: Local
descriptor learning loss”.



Spread out descriptor

51

51Zhang et al., “Learning Spread-out Local Feature Descriptors”.



Datasets & Benchmarks



Oxford Matching Benchmark

I Measures descriptor performance in image matching task

I NN matching



Oxford Matching Protocol

Two local frames A and B are matched if ||DA − DB ||22 < τ

I recall = #correct matches
#correspondences

I 1-precision = #false matches
#correct matches + #false matches



Performance curves

||DA − DB ||22 < τ
Varying τ leads to performance curves
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Inconsistency in evaluation results - Oxford Benchmark



Inconsistency in evaluation results - Oxford Benchmark

I no strict protocol for patch extraction and normalisation

I no strict protocol for detector configuration

I no standardised measurement region



Inconsistency in evaluation results - Oxford Benchmark

mAP: mean area under performance curves



From images to patches



Phototourism Patch Datasets

Pre-extracted patches arranged in matching and non-matching
pairs



Phototourism Patch Datasets - Evaluation

LabelPair Distance
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Phototourism Patch Datasets - Evaluation Issues

ROC from positive and 
negative pairs of patches

PR Curves from 
NN matching



Phototourism Patch Datasets - Evaluation Issues

ROC from positive and 
negative pairs of patches

PR Curves from 
NN matching

I Patch verification (yes/no) different problem than matching
(match all with all)

I No single task should be used for evaluating a method



HPatches Dataset

52

52Balntas et al., “HPatches: A Benchmark and Evaluation of Handcrafted
and Learned Local Descriptors”.



HPatches Dataset



HPatches tasks

Image Matching

Ref.

Target

CorrectCorrect

Patch Retrieval

Query

Pool

Patch Verification

Same

Same

Same

SameNot Same

Not Same



HPatches results



SfM Benchmark

53

53Schönberger et al., “Comparative Evaluation of Hand-Crafted and Learned
Local Features”.



SfM Benchmark

54

54Schönberger et al., “Comparative Evaluation of Hand-Crafted and Learned
Local Features”.



Current trends & future challenges



Matching without local features



LIFT

55

55Yi et al., “LIFT: Learned Invariant Feature Transform”.



LIFT



LIFT



LF-Net

56

56Ono et al., “LF-Net: Learning Local Features from Images”.



Learning correspondences

57

57Yi et al., “Learning to Find Good Correspondences”.



Superpoint

58

58DeTone, Malisiewicz, and Rabinovich, “SuperPoint: Self-Supervised
Interest Point Detection and Description”.



Implicitly Matched Interest Points (IMIPs)

59

59Cieslewski, Bloesch, and Scaramuzza, “Matching Features without
Descriptors: Implicitly Matched Interest Points (IMIPs)”.



60

60Kendall, Grimes, and Cipolla, “PoseNet: A Convolutional Network for
Real-Time 6-DOF Camera Relocalization”.



Local scene coordinates

61

61Brachmann and Rother, “Learning Less is More - 6D Camera Localization
via 3D Surface Regression”.



DeMoN

62

62Ummenhofer et al., “DeMoN: Depth and Motion Network for Learning
Monocular Stereo”.



Unsupervised learning of camera transformation

63

63Zhou et al., “Unsupervised Learning of Depth and Ego-Motion from
Video”.



Open questions - Benchmarking

I Are matching benchmarks representative?

I How can we correctly evaluate methods by eliminating other
nuisance factors?



State-of-the art & future challenges - open questions

I How can the current matching paradigm be improved?

I Do we still need local features?

I Are dense descriptors using FCN needed?

I Are attention models related to detectors?

I Is end-to-end learning of every stage the best solution?

I How to add semantics into the pipeline?



64

64Kim, Dunn, and Frahm, “Learned Contextual Feature Reweighting for
Image Geo-Localization”.





Related CVPR 2019 Workshops

Long-Term Visual Localization under Changing Conditions

T.Sattler, V. Balntas, M. Pollefeys, K. Mikolajczyk, J. Sivic, T.
Pajdla, L. Hammarstrand, H. Heijnen, F. Kahl, W. Maddern, C.
Toft, A. Torii
Includes a Challenge on Local Features

Image Matching: Local Features and Beyond

V. Balntas, E. Trulls, K.M. Yi, J. Shonberger, V. Lepetit
Includes a Challenge on Local Features



The End - Thanks

Please consider taking part in the CVPR 2019 workshop challenges!
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