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Matching images




Applications

» 3D Reconstructions
> Self-driving cars
> Augmented Reality

> Assistance for Visually Impaired



Augmented Reality

Collect Items to
increase your score

Unlock Checkpoints

ScavengAR App



Assistance

Google Maps AR



Building Rome in a few hours

Building Rome in a Day - University of Washington & Microsoft
Research



Image Matching - Practicality

> Matching a set of images enables us to “recover” the
geometry of the world from individual images.



Image Matching - Practicality

» To understand why, we need to discuss a few things about
cameras.



Pinhole Camera Model
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'Hartley and Zisserman, Multiple view geometry in computer vision.



Pinhole Camera Model

Homogeneous Coordinates Mapping
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Pinhole Camera Model

World Point
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Non-zero principal point
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Forward and Backward Projections

Forward Projection (world point to image point)
x = Px
Backward Projection (image point to world point)

X(\) = Ptx+A\C
PP =1



Epipolar Geometry
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Fig. 9.1. Point correspondence geometry. (a) The two cameras are indicated by their centres C and
C' and image planes. The camera centres, 3-space point X, and its images x and x' lie in a common
plane 7. (b) An image point X back-projects to a ray in 3-space defined by the first camera centre, C,
and x. This ray is imaged as a line 1 in the second view. The 3-space point X which projects to x must
lie on this ray, so the image of X in the second view must lie on 1'.



Epipolar Geometry

AN L
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a b

Fig. 9.2. Epipolar geometry. (a) The camera baseline intersects each image plane at the epipoles e
and €. Any plane w containing the baseline is an epipolar plane, and intersects the image planes in
corresponding epipolar lines Land I'. (b) As the position of the 3D point X varies, the epipolar planes
“rotate” about the baseline. This family of planes is known as an epipolar pencil. All epipolar lines
intersect at the epipole.



Fundamental Matrix F

Fi%. 10.1. Triangulation. The image points x and x' back project to rays. If the epipolar constraint
x'TFx = 0 is satisfied, then these two rays lie in a plane, and so intersect in a point X in 3-space.

For all corresponding points x <> y in two images,
xTFy =0

We can find F by only using pairs of matching points.



3D Reconstruction

Given a set of N correspondences x; <> x;, find camera matrices P
and P’ and the 3D points X; s.t.

Xj = PX,'
x; =P X;
Vi e [1,N]



3D Reconstruction

> Get point correspondences
> Compute F
» Compute camera matrices

> For each point correspondence, compute the point in space
that projects to the two image points

Fi%. 10.1. Triangulation. The image points x and x' back project to rays. If the epipolar constraint
x'TFx = 0 is satisfied, then these two rays lie in a plane, and so intersect in a point X in 3-space.



Computation of the Fundamental Matrix F

Objective
Given n > 8 image point correspondences {x; « X/}, determine the fundamental matrix F
such that x| TFx; = 0.

Algorithm

(i) Normalization: Transform the image coordinates according to X; = Tx; and &: =
T'x!, where T and T’ are normalizing transformations consisting of a translation and
scaling.

af N N
(i) Find the fundamental matrix ¥ corresponding to the matches %; < %, by

(a) Linear solution: Determine F from the singular vector cone%pundmg to the
smallest singular value of A, where A is composed from the matches %; < X|
as defined in (11.3).

(b) Constraint enforcement: Replace F by ' such that det £ = 0 using the SVD
(see section 11.1.1).

(iii) Denormalization: Set F = TTET. Matrix F is the fundamental matrix corresponding
to the original data x; < x.

Algorithm 11.1. The normalized 8-point algorithm for F.



Computation of the Fundamental Matrix F

In theory
8 correspondences are enough for computing F

Practically
We rely on matching (lots of) interest points between images



Matching interest points
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Robust estimation of good correspondences

Fischler and Bolles

Algorithm 1 RANSAC

1: Select randomly the minimum number of points required to determine the model
parameters.

2: Solve for the parameters of the model.

3: Determine how many points from the set of all points fit with a predefined toler-
ance ¢.

4: If the fraction of the number of inliers over the total number points in the set
exceeds a predefined threshold 7, re-estimate the model parameters using all the
identified inliers and terminate.

5: Otherwise, repeat steps 1 through 4 (maximum of N times).




Robust estimation of good correspondences

300 §

200 4

100 -

Response

—100 4

= Linear regressor
= RANSAC regressor
Inliers

—200 +

OQutliers

B T T SR B
et sklearn
Estimated coefficients (true, linear regression, RANSAC):

82.1903908407869 [54.17236387] [82.08533159]



Robust estimation of good correspondences




Homography

Fig. 13.1. The homography induced by a plane. The ray corresponding to a point x is extended to
meet the plane T in a point X-; this point is projected to a point x' in the other image. The map from
x to X' is the homagraphy induced by the plane w. There is a perspectivity, x = HizXr, between the
world plane w and the first image plane; and a perspectivity, X' = Hy,x ., between the world plane and

second image plane. The composition of the two perspectivities is a homography, X' = Ha-H, 1 x = Hx,
between the image planes.



Homography

F generic case
Each point in one image, is matched with a line in the other image

Homography special property
Each point in one image, is matched with a single point in the
other image



Image Matching

Some examples & applications



Panorama

{a Image |

(@) SIFT maxhes | () SIFT matches 2

() RANSAC inliers | (Y RANSAC inliers 2

2Brown and Lowe, “Automatic panoramic image stitching using invariant



Image

rectification

Scan documents into .
Turn your iPhone into . ¢ Unique SureScan 3x
high-quality PDFs: name,
a fast scanner feature for sharpest scans
store and search
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3d Models

e

Sparse model of central Rome using 21K ph orf‘)s ,urodt:fced by COLMAP's S5fM pipeline.

iins n = T

Dense b?odeis of several landmarks produced by COLMAP's MVS pf’beﬁne.
Colmap https://colmap.github.io/


https://colmap.github.io/

Recap

Better ways to matching points between two images

3
Easier job for RANSAC

0

Better 3D models, panoramas, AR apps etc



Classical matching methods

Classical matching methods



The “classical” image matching pipeline

Image A Image B

Step 1 Detection: Choose “interesting” points

Step 2 Description: Convert the points to a suitable mathematical
representation (descriptor)

Step 3 Matching: Match the point descriptors between the two
images



Terminology

Literature terms
Features, Keypoints, Local features, Interest points

Our terminology

Feature frame3

a representation of a specific area/sub-region of an image,
characterised by location and shape

3Vedaldi and Fulkerson, VLFeat: An Open and Portable Library of
Computer Vision Algorithms.



Common types of feature frames

Point: x,y

Circle: x,y,p

Rectangle: x,y,w,h
Oriented Circle: x,y, p,0
Ellipse: x,y,a, b

vvVvyvVvyyy

Oriented Ellipse: x,y,a, b,0



Interest Points

fo,y) = 0 (I, yi) — 1(xk + Ax, yi + Ay))?
(xk,yx)EW
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Interest Points
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Harris Corners
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Harris Corners

)N D DR N

M = (xy)ew (x,y)ew
> kb X P2
(x,y)ew (x,y)ew

A1, Ao: Eigenvalues of M
> )\1,)\2 ~0
> )\1 > )\2



Harris Corners
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Harris Corners
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Harris Criterion
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Adding scale estimation




SIFT Detector
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*Lowe, “Distinctive image features from scale-invariant keypoints”



SURF

Fig. 1. Left to right: the (discretised and cropped) Gaussian second order partial
derivatives in y-direction and @y-direction, and our approximations thereof using box
filters. The grey regions are equal to zero. 5

®Bay, Tuytelaars, and Van Gool, “Surf: Speeded up robust features’



KAZE

ti=5.12 ti=20.48 ti=81.92 ti = 130.04 ti = 206.42

Fig. 2. Comparison between the Gaussian and nonlinear diffusion scale space for several evolu-
tion times #;. First Row: Gaussian scale space (linear diffusion). The scale space is formed by
convolving the original image with a Gaussian kernel of increasing standard deviation. Second
Row: Nonlinear ditfusion scale space with conductivity function gs.

6Alcantarilla, Bartoli, and Davison, “KAZE features".



Edge Foci

Figure 2. Flow diagram of the detector: (a) input image, (b) nor-
malized gradient f (c) normalized gradients separated into orien-
tations f;, (d) responses after applying oriented filter h; = f;® g,
(e) the aggregated results h, and (f) detected interest point.

7Zitnick and Ramnath, “Edge foci interest points”.



MSER

8Matas et al., “Robust wide-baseline stereo from maximally stable extremal
regions” .



FAST

9Rosten and Drummond, “Machine learning for high-speed corner
detection” .



Feature Frame Detectors - Recap

> Many possibilities for types of feature frames

> Might include scale & orientation

Edge Foci DoG Hessian Laplace Harris

o N et

Figure 8. Visualization of the interest points and their spatial dis-
tributions for various detectors on Yosemite image.




From points to descriptors

Rectify patch around
feature frame

=

Detect Regions



From points to descriptors

Rectify patch around
feature frame

Detect Regions

Local Descriptor

A vectorial representation of the patch around a feature frame
which is more a discriminative and robust than the patch.



Importance of orientation




Importance of orientation




From points to descriptors

ZMUV descriptor

» Zeroed-mean-unit-variance patch (ZMUV') normalisation,
mean(p)
std(p) -

> not invariant to simple geometric deformations.

which is defined as p =

> In addition, the dimensionality of such a descriptor can be
very high even for very small normalised patches e.g. it can
reach 210 for a 32 x 32 patch.



Descriptor definition

RN*N "3 descriptor is the result f, € RP of a

function f
with D < N x N (ideally) and £, more robust to geometric noise
than the vector x (flattened list of pixel illuminations).

Given a patch x €



Descriptor Categorisation

> Qutput type
> Floating point
> Binary
» Hand-crafted vs. learning

» Engineered / Hand Crafted Methods
> Learning-based methods



Hand-crafted floating point descriptors



SIFT Descriptor

| 2

>

The local spatial pooling of the descriptor is based on a
rectangular grid that partitions the patch into several regions.

Assuming the patch is divided into M rectangular areas, and
the gradients are quantised to K angle bins, the resulting K
dimensional histograms concatenated from M areas, will be
represented by a point in the RM*K space.

In the case of the original implementation of SIFT, 16 grid
quanta were combined with 8 angular bins, resulting in final
dimensionality of 128.






GLOH

F

(a) image gradients (b) keypoint descriptor 10

Mikolajczyk and Schmid, “A performance evaluation of local descriptors’ .



CHoG
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1 Chandrasekhar et al., “CHoG: Compressed histogram of gradients a low
bit-rate feature descriptor”.



Daisy

direction—j

Fig. 6. The DAISY descriptor: Each circle represents a region where the
radius is proportional to the standard deviations of the Gaussian kemels
and the “+" sign represents the locations where we sample the
convolved orientation maps center being a pixel location where we
compute the descriptor. By overlapping the regions, we achieve smooth
transitions between the regions and a degree of rotational robustness.
The radii of the outer regions are increased to have an equal sampling of
the rotational axis, which is necessary for robustness against rotation. 12

12Tola, Lepetit, and Fua, “Daisy: An efficient dense descriptor applied to
wide-baseline stereo”.




LIOP
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13Zhenhua Wang and Wu, “Local Intensity Order Pattern for Feature
Description”.



LUCID

[~, descl] = sort(pl(:));
[~, dese2] = sort(p2(:));
distance = sum(descl ~= desc2);

[ [ [T ITTTTTT]
12345678 9WILBUISIETEYNARENLAEL

[3,5,6,9,13,14,16,18,19,21,22, 23,2, 11,20, 1,4, 7,8, 10,12, 15,17, 24,25, 26,27 14

14Ziegler et al., “Locally uniform comparison image descriptor’.



Aggregation across scales and viewpoints

Several methods identified that aggregation across different scales
or different affine viewpoints into a single feature vector can
improve the discriminative power of the descriptor, albeit at the
price of much higher computational cost



ASIFT

Similarity—invariant image matching

15

®Yu and Morel, “ASIFT: An algorithm for fully affine invariant comparison” .



DSP-SIFT

R E
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16

®Dong and Soatto, “Domain-size pooling in local descriptors: DSP-SIFT" .



ASV

Descriptors of the Stability voting score set ASV (real) ASV (binary)
sampled patches SIFT form sample j: X, = ]
— ML.;JML \ Threshold Sum E Multithresholds (5]
WLLLEL T we-a (-5 o I
SIFT from sample i: x, 1% stage . [\ M 2% stage
Patches: {p, ] s thresholding voing vectors: ("} thresholding
=1 Features: {x,. }M with M =C} 17

"Yang, Lin, and Chuang, “Accumulated Stability Voting: A Robust
Descriptor From Descriptors of Multiple Scales”.



Hand-crafted binary descriptors



Hashing SIFT
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Image from Haisheng Li.
1819

8 Terasawa and Tanaka, “Spherical Ish for approximate nearest neighbor
search on unit hypersphere”.
9Strecha et al., “LDAHash: Improved matching with smaller descriptors”.



BRIEF
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DCalonder et al., “Brief: Binary robust independent elementary features” .



BRISK
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Figure 3. The BRISK sampling pattern with N = 60 points: the small
blue circles denote the sampling locations; the bigger, red dashed circles
are drawn at a radius o comresponding to the standard deviation of the
Gaussian kernel used to smooth the intensity values at the sampling points.
The pattern shown applies to a scale of t = 1. 21

2| eutenegger, Chli, and Siegwart, “BRISK: Binary robust invariant scalable
keypoints”.



FREAK

Figure 4: Nlustration of the FREAK sampling pattern similar to the retinal
ganglion cells distribution with their corresponding receptive fields. Each
circle represents a receptive field where the image is smoothed with its
corresponding Gaussian kernel. 22

22 Alahi, Ortiz, and Vandergheynst, “Freak: Fast retina keypoint”.



Learning-based floating point descriptors



PCA-SIFT

Collect a matrix X € RN*P with N descriptors of dimensionality D
C=XxTX
C=Uxv

Use the first K eigenvectors from U to project X to a new
descriptor of size K. X = U X?3

BKe and Sukthankar, “PCA-SIFT: A more distinctive representation for
local image descriptors”.



PCA-SIFT
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Picking the best Daisy

2 Rings 6 Segments 2 Rings 8 Segments o4

% Calonder et al., “Brief: Binary robust independent elementary features” .



Linear projections

T Ty ||
Z(w‘)ep flu”x; — u"x?
uppp = argmax T T3
u (i,j)€S lu?s; — ulx|
u?Cpu @
ul’Csu
Where Cp and Cgs represent the inter- and intra-class
covariance matrices of differently labeled points (un-

matched features in image descriptor space) and same
labeled points (matched features), respectively.

= argmax
u

O Y (xi—x)(x —x)T 3)
(i,J)€D

Cs 3 (- %)% —x,)7 )
(i,J)ES

Note that these are not the same matrices as the between-
class Sp and within-class scatters Sy in equation (1) for
LDA, although they are related (see section 3.3) . The
solution is the generalized eigenvectors:

U = eig(C5'Cp) (5)

The projection matrix is U € R™*™, with m’ < m eigen-
vectors corresponding to the m’ largest eigenvalues. 25

B Cai, Mikolajczyk, and Matas, “Learning linear discriminant projections for
dimensionality reduction of image descriptors”.



Linear projections

p e bR RN RS A SO Sl S R P
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2Caj, Mikolajczyk, and Matas, “Learning linear discriminant projections for
dimensionality reduction of image descriptors”.



Convex optimisation for learning descriptors

Learn optimal configuration of gaussian filters s.t.

in d,(x.y) < in d,(x,u),
i n(x.y) S (X, u),

high

low

27

2"Simonyan, Vedaldi, and Zisserman, “Learning Local Feature Descriptors
Using Convex Optimisation.”



Learning-based binary descriptors



ORB

> Instead of random intensity tests (as in BRIEF), select tests
based on data

» Choose tests with maximum variance across different samples
& minimum correlation between them.

> No need for pairs of labelled positive and negative patches
28

%Rublee et al., “ORB: An efficient alternative to SIFT or SURF”.



ORB

Figure 6. A subset of the binary tests generated by considering
high-variance under orientation (left) and by running the learning
algorithm to reduce correlation (right). Note the distribution of the
tests around the axis of the keypoint orientation, which is pointing
up. The color coding shows the maximum pairwise correlation of
each test, with black and purple being the lowest. The learned tests
clearly have a better distribution and lower correlation.



LATCH

Triplets of comparisons instead of pairs

29

2 evi and Hassner, “LATCH: learned arrangements of three patch codes”.



DBRIEF

Vien b =sign(w, x +7:)

Learning of w; and t;
30

30Tyzcinski and Lepetit, “Efficient Discriminative Projections for Compact
Binary Descriptors”.



Boosting

Similar patches

Different patches

Gradient maps

Goal: cleft (thhl @ Goal: (M 4 ¢ gl
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Blnar; nutput of a bnosted hash function

31 Trzcinski et al.,

31

“Boosting Binary Keypoint Descriptors” .



Boosting

180

.}

a T

Figure 4. Visualization of the selected weak learners for the first 8
bits learned on 200k pairs of 32 x 32 patches from the Notre Dame
dataset (best viewed on screen). For each pixel of the figure we
show the average orientation weighted by the weights of the weak
learners by, For different bits, the weak learners cluster about
different regions and ori ions ill ing their compl ¥
nature.




BOLD

Overview of the proposed BOLD descriptor
query patch A online creation of synthesised views BOLD 4

7 /) mﬁﬁﬁ%

query patch B online creation of synthesised views BOLDg

B EEE

32

$2Balntas, Tang, and Mikolajczyk, “BOLD - Binary Online Learned
Descriptor For Efficient Image Matching”.



BOLD

Typical descriptors

Patch Descriptor :
A ﬁ Da=ldar,daz - dapl Distance
‘ A(DA,D
%B. D =ds1,ds ... dsp) (Pa ’3)3

Locally learned BOLD

Stable descriptor
dimensions

A W Da=ldar,daz---dav] M4 =[0,1...1] Distance

‘ A(Da, M, D, M),
3B. Dp=lds1,ds...dsp] Mg =[1,0...0] (Pas M, D B)j

Patch Descriptor




BOLD




BOLD




Deep Learning Era

B((reom

Encoder Decoder
conv + BN + ReLU + pooling upsampling + conv + BN + ReLU

Image: Nicolas Audebert



Deep learning: detectors



TILDE

(a) Stack of training images (b) Desired response on (c) Regressor response for a (d) Keypoints detected in the
positive samples new image new image

$Verdie et al., “TILDE: A Temporally Invariant Learned DEtector”.

33



Learning a detector by ranking

Figure 1.

Left: an image undergoes a perspective change transformation. Right: our learned response function, visualized as a heat
map, produces a ranking of image locations that is reasonably invariant under the transformation. Since the resulting ranking is largely
repeatable, the top/bottom quantiles of the response function are also repeatable (examples of interest points are shown by arrows). 34

% Savinov et al., Quad-networks: unsupervised learning to rank for interest
point detection.



Learning a detector by ranking

Hinge loss

Figure 2. Quad-network forward pass on a training quadruple. Patches (1,3) and (2,4) are correspondence pairs between two different 35
images, so 1,2 come from the first image and 3, 4 come from the second image. All of the patches are extracted with a random rotation.

%Savinov et al., Quad-networks: unsupervised learning to rank for interest
point detection.



Learning covariant detectors

DETNET
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Fig. 4: Training and validation patches. Example of training triplets (x1,x2, g) (x1 above and
x2 = gx1 below) for different detectors. The figure also shows “easy” and “hard™ patch pairs,
extracted from the validation set based on the value of the loss (16). The crosses and bars represent
respectively the detected translation and orientation, as learned by DETNET-L and ROTNET-L. 36

Easy

% enc and Vedaldi, Learning Covariant Feature Detectors.



Learning Discriminative and Transformation Covariant
Local Feature Detectors

1
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(a) Transformation Predictor (b) Inverse transform to standard patch

gi @ fo=1F  Aggregation for final feature 37

3"Lenc and Vedaldi, Learning Covariant Feature Detectors.



Learning to assign orientations

03@ 000

Reference Our method Reference Our method

il }Wﬂ ﬁ

38
38Yi et al., “Learning to Assign Orientations to Feature Points”.




Deep learning: descriptors



2008 work

Early work on learning convolutional neural networks as feature
descriptors specifically for local patches, but was not immediately

e.g. image pair
of the

same class

B
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trainable @ ou0
Mocel 9
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Model © ouz
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39
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Ew

=

Label {0,1}

loss
function

—

%9 Jahrer, Grabner, and Bischof, “Learned local descriptors for recognition

and matching”.



2008 work

Early work on learning convolutional neural networks as feature
descriptors specifically for local patches, but was not immediately
followed

40 Jahrer, Grabner, and Bischof, “Learned local descriptors for recognition
and matching”.



2014 work

Results shown in#! that the features from the last layer of a
convolutional deep network trained on ImageNet dataset collected
for general objects classification can outperform SIFT.

Raw RGB SIFT

o
3

=

@

ImageNet CNN Unsupervised CNN

o
3

o

@

o
=
)

s

)
=

=
—a-Layer2
Layer 3

= Layer 4

s
s

et
~=-Layor2

Lajer 3
= Layers

)
=

)

=

Average matching mAP

o
Average matching mAP

=
Average maiching mAP

o
Average matching mAP

o

a7

69 47 69 91 a7 69 91
Patch size Patch sze Patchsize Patch size

Such features outperform the performance of descriptors resulting
from convex optimisation.

“1Fischer, Dosovitskiy, and Brox, “Descriptor Matching with Convolutional
Neural Networks: a Comparison to SIFT".



DeepCompare
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427agoruyko and Komodakis, “Learning to Compare Image Patches via
Convolutional Neural Networks”.



DeepCompare
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Figure 2. Three basic network architectures: 2-channel on the left,
siamese and pseudo-siamese on the right (the difference between
siamese and pseudo-siamese is that the latter does not have shared
branches). Color code used: cyan — Conv+ReLU, purple — max  Figure 3. A central-suround two-stream network that uses a
pooling, yellow = fully connected layer (ReLU exists between siamese-type architecture to process each stream. This results in
4 branches in total that are given as input to the top decision layer
(the two branches in cach stream are shared in this case)

patch 1 patch 2

fully connected layers as well).

43Zagoruyko and Komodakis, “Learning to Compare Image Patches via
Convolutional Neural Networks”.



DeepDesc
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#Simo-Serra et al., “Discriminative Learning of Deep Convolutional Feature
Point Descriptors”.



DeepDesc
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45Simo-Serra et al., “Discriminative Learning of Deep Convolutional Feature
Point Descriptors”.



MatchNet

A: Feature network B: Metric network
]
P — Name Type OuwpuDim.  PS S
‘ . Comv( C BdxBdx24 TxT 1
. coms C: MatchNat in training Pool0 MP  32x32x21 3x3 2
Cross-Ent s Convl C 2x32x64 x5 |
L Pooll MP 16 16% 64 3x3 2
Conv2 C 1 =16x9% 3x3 |
Comv3 C 16 16x9 3x3 |
o cemt Convd C 16x16x64 3x3 1
Poold MP BxB8x64 3x3 2
Bottleneck  FC B - -
T ol e FE—
Preprocessing FC2 FC F -
FC3 FC 2 -

*Han et al., “MatchNet: Unifying Feature and Metric Learning for
Patch-Based Matching”.



TFeat

Loss: function of

4

[If (@) = f(p)ll:
[If(a) = fn)ll2

3 lrani(2.6) + A - w2
i=1
where

Lrank (8.8 ) = max (0, p+ 5, —4_) 47

4"Vassileios Balntas and Mikolajczyk, “Learning local feature descriptors with
triplets and shallow convolutional neural networks”.
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“8\/assileios Balntas and Mikolajczyk, “Learning local feature descriptors with
triplets and shallow convolutional neural networks”.



L2-Net

.

> Distance matrix loss: 1/2(1 — Y{" Y2)

> De-corellation loss: Y;"Y;
49

“Tjan, Fan, and Wu, “L2-Net: Deep Learning of Discriminative Patch
Descriptor in Euclidean Space”.



HardNet
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%0Mishchuk et al., “Working hard to know your neighbor's margins: Local
descriptor learning loss”.



Spread out descriptor
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Figure 2. Probability density of inner product of two points which
are independently and uniformly sampled from the unit sphere in
d-dimensional space. We can see that, in high dimensional space,
maost pairs are close to orthoganal.
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%1Zhang et al., “Learning Spread-out Local Feature Descriptors’.



Datasets & Benchmarks



Oxford Matching Benchmark

> Measures descriptor performance in image matching task
» NN matching

Blur Blur Viewpoint Viewpoint

s SNy 7
1000x700 1000x700 800x640 1000x700
6 images 6 images 6 images 6 images

Zoom+rotation Zoom+rotation Light JPEG compression

S :
765x512 800x640 921x614 800x640
6 images 6 images 6 images 6 images



Oxford Matching Protocol

Two local frames A and B are matched if ||Da — Dgl|3 < T

F# correct matches

> recall = Hcorrespondences

##false matches
matches + #false matches

> 1-precision = Tcomrect



Performance curves

1Da = Dgll3 < 7
Varying 7 leads to performance curves
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Inconsistency in evaluation results - Oxford Benchmark

LIOP outperforms SIFT SIFT outperforms LIOP
[Miksik and Mikolajezyk, 2012] [Tsun-Yi Yang and Chuang, 2016]
[Wang et al., 2011b]

BRISK outperforms SIFT SIFT outperforms BRISK
Leutenegger et al. [2011] [Levi and Hassner, 2016]
Miksik and Mikolajezyk [2012]

ORB outperforms SIFT SIFT outperforms ORB
Rublee et al. [2011] Miksik and Mikolajezyk [2012]

BinBoost outperforms SIFT SIFT outperforms BinBoost
[Levi and Hassner, 2016] [Balntas et al., 2015]
[T. Trzcinski and Lepetit, 2013]  [Tsun-Yi Yang and Chuang, 2016]

ORB outperforms BRIEF BRIEF outperforms ORB
[Rublee et al., 2011] [Levi and Hassner, 2016]




Inconsistency in evaluation results - Oxford Benchmark

——Detections Measurement regions

P no strict protocol for patch extraction and normalisation
> no strict protocol for detector configuration

> no standardised measurement region



Inconsistency in evaluation results - Oxford Benchmark

mAP: mean area under performance curves

descr 12 13 1/4
SIFT vl sift 047 040 0.46
SIFT vl.covdet 0.32 0.14 0.18

method paper
vl_sift ASV [CVPR 2016], DSP-SIFT [CVPR 2015]

vl_covdet BinBoost [PAMI 2015], BOLD [CVPR 2015]



From images to patches




Phototourism Patch Datasets

Pre-extracted patches arranged in matching and non-matching




Phototourism Patch Datasets - Evaluation
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Phototourism Patch Datasets - Evaluation Issues

ROC from positive and PR Curves from
negative pairs of patches NN matching
' 0.6
_—" A'
05 L &
0.5
o 09 /A ‘e ] g
o / ‘e m o = 04
R pry
EN / ‘= . é 03 /4
Binl 2560,21.44%) ~L— S
g“’s{ 'BOLD: (5155,40.66% 4 o 02 —a—
£ o7l . SIFT (128139.28% S ot —A—
. SURF (ed1d . # 01 SR ==
oM o OBRIER o02b.10%] RS g
BRIEF" (5&:5595% . BHIEF,——
o8 o1 as 0 01 02 03 04 05 06 0.7 08 09 1

02 08
False oositive rate 1-precision



Phototourism Patch Datasets - Evaluation Issues

ROC from positive and PR Curves from
negative pairs of patches NN matching
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> Patch verification (yes/no) different problem than matching
(match all with all)

> No single task should be used for evaluating a method



HPatches Dataset

%2Balntas et al., “HPatches: A Benchmark and Evaluation of Handcrafted
and Learned Local Descriptors”.



HPatches Dataset
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HPatches tasks
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HPatches results
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SfM Benchmark

Dense modeis of severa.' landmarks produced by COLMAP’s MVS pipeline.

%3Schdnberger et al., “Comparative Evaluation of Hand-Crafted and Learned
Local Features”.

53



SfM Benchmark

#Images #Registered #Sparse Points  # Observations Track Length  Reproj. Error #Inlier Pairs  # Inlier Matches  # Dense Points
Fountain SIFT 1 1 10,004 44K 449 0.30px 76K 2970K
SIFT-PCA 1 70K 480 0.39x 124K 3.021K
DSPSIFT 1 71K 480 041px 19K
ComoOpr 1 67K 475 0.37px 14K
DeepDesc 11 61K 93K
TFear 1 64K 103K
LIFT 1 46K 83K
Herzjesu SIFT 8 8 4,916 19K 400 0.32px 27 2K
SIFT-PCA 8 7433 31K 419 042px 28 47K
DSPSIFT 8 7.760 32K 419 B S0K
ComOpr 8 6939 28K 413 ] 4K
DeepDesc 8 6418 25K 392 28 34K
TFear 8 6,600 27K 409 28 38K
LIFT 8 7834 30K 3.95 E 246K
South Building SIFT 128 128 0.42px 1K 1003K
SIFT-PCA 128 0.54px 3K 2019K
DSP-SIFT 128 0.57px 3K 2079K
ComOpi 128 051px 4K 1856K
DeepDesc 128 0.48px 6K 1463K
TFear 128 0.49px 3K 1567K
LIFT 128 0.78px 3K LIGSK
Madrid Metropolis ~ SIFT 1344 0.53px 14K
SIFT-PCA 0.57px 27K
DSPSIFT 0.64px 21K
ComOpt 0.57px 9K
DeepDesc 0.53px 19K
TFear 0.54px 18K 2,135K
LIFT 0.76px 13K 1498K
Gendarmenmarkt ~ SIFT 1463 0.64px BK
SIFT-PCA 0.69px 43K
DSPSIFT 0.74px 56K
ComOpt 0.70px 56K
DeepDesc 0.68px 31K
TFear 297,266 0.66px 39K LISIK
LIF 180,746 0.83px 27K 1386K

%4 Schonberger et al., “Comparative Evaluation of Hand-Crafted and Learned

Local Features”.




Current trends & future challenges



Matching without local features



LIFT

%5Yi et al., “LIFT: Learned Invariant Feature Transform”.
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LIFT
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Detector
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(a) The LF-Net architecture. The derecior network generates a scale-space score map along with dense orientation
estimates, which are used to select the keypoints. Image patches around the chosen keypoints are cropped with a
differentiable sampler (STN) and fed to the descripior network, which generates a descriptor for each patch.
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%0no et al., “LF-Net: Learning Local Features from Images’.



Learning correspondences
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(a) RANSAC (b) Our approach

"Yi et al., “Learning to Find Good Correspondences”.



Superpoint
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%8DeTone, Malisiewicz, and Rabinovich, “SuperPoint: Self-Supervised
Interest Point Detection and Description”.



Implicitly Matched Interest Points (IMIPs)

Figure 1. We propose a CNN interest point detector which pro-

vides implicitly matched interest points — descriptors are not
needed for matching. This image illustrates the output of the final

layer, which determines the interest points. Hue indicates which
channel has the strongest response for a given pixel, and brightness
indicates that response. Circles indicate the 128 interest points,
which are the global maxima of each channel, circle thicknesses
indicate confidence in a point. Lines indicate inlier matches after 59
P3P localization.

% Cieslewski, Bloesch, and Scaramuzza, “Matching Features without
Descriptors: Implicitly Matched Interest Points (IMIPs)".




%0Kendall, Grimes, and Cipolla, “PoseNet: A Convolutional Network for
Real-Time 6-DOF Camera Relocalization”.



Local scene coordinates

3D Scene Scene Coordinates

Learned: Scene Coordinate Regression

Scene Coordinate
Prediction

Input RGB

FCN

640x480

Pose Hypotheses § Final Estimate |61

®1Brachmann and Rother, “Learning Less is More - 6D Camera Localization
via 3D Surface Regression”.



DeMoN

82Ummenhofer et al., “DeMoN: Depth and Motion Network for Learning
Monocular Stereo”.



Unsupervised learning of camera transformation

(a) Training: unlabeled video clips.

Target view Depth CNN

(b) Testing: single-view depth and multi-view pose estimation.63

Zhou et al., “Unsupervised Learning of Depth and Ego-Motion from
Video".



Open questions - Benchmarking

> Are matching benchmarks representative?

> How can we correctly evaluate methods by eliminating other
nuisance factors?



State-of-the art & future challenges - open questions

How can the current matching paradigm be improved?

Do we still need local features?

Are attention models related to detectors?

>

>

> Are dense descriptors using FCN needed?

| 2

> Is end-to-end learning of every stage the best solution?
>

How to add semantics into the pipeline?



image representation

Contextual

F ghting
Network
feature map

conv layers

P mpUL Mg

(@)
Figure 1. Image representation with contextual feature reweight-
ing. (a) A contextual reweighting network takes convolutional fea-
tures of a deep CNN as input to produce a spatial weighting mask
(b) based on the learned contexts. The mask is used for weighted
aggregation of input features to produce the representation of the
input image (c). 64

%Kim, Dunn, and Frahm, “Learned Contextual Feature Reweighting for
Image Geo-Localization”.






Related CVPR 2019 Workshops

Long-Term Visual Localization under Changing Conditions
T.Sattler, V. Balntas, M. Pollefeys, K. Mikolajczyk, J. Sivic, T.
Pajdla, L. Hammarstrand, H. Heijnen, F. Kahl, W. Maddern, C.

Toft, A. Torii
Includes a Challenge on Local Features

Image Matching: Local Features and Beyond

V. Balntas, E. Trulls, K.M. Yi, J. Shonberger, V. Lepetit
Includes a Challenge on Local Features



The End - Thanks

Please consider taking part in the CVPR 2019 workshop challenges!
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